If you made any changes in Pure these will be visible here soon.

Personal profile

Research interests

When we suffer from injury or disease, we depend on the ability of our body to repair itself and regenerate damaged tissue. Nature relies on complex and dynamic networks of biochemical signals to control this healing process. As a chemist, I’m interested in how we can take inspiration from these natural systems and produce exciting new materials, able to instigate, enhance, and accelerate healing. By designing synthetic scaffolds which can modulate and mimic biology, we can generate innovative strategies to treat some of the most prevalent illnesses and diseases worldwide.

Recreating the complexity and biological stimuli of native environments offers exciting challenges in synthetic material chemistry and chemical biology. My group’s research focuses on developing new strategies for the functionalisation and synthesis of 3D scaffolds that overcome the limitations of current biomaterial design approaches. We combine cutting-edge tools in biomaterial conjugation, dynamic chemistry, and bio-functionalisation to harness the power of native regenerative environments. This approach allows us to generate modular platforms for controlling cellular growth and behaviour, and to drive the growth of functional and mature tissue.

Biography

Chris studied Natural Sciences at the University of Cambridge, graduating with an MSc in 2009. He moved to the University of Oxford later that year and undertook his PhD with Prof. Ben Davis, where he studied new metal-mediated reactions for protein modification. In 2013, Chris joined the group of Prof. Molly Stevens for postdoctoral research, first at Imperial College London and then the Karolinska Institutet in Stockholm. His research focussed on the design and synthesis of materials for tissue engineering and biosensing. Chris took up his position as Lecturer in Chemistry at the University of York in September 2018.

Network

Recent external collaboration on country/territory level. Dive into details by clicking on the dots or