How neural oscillations support the emergence of spatial representations

Project: Other projectOther internal award

Project Details

Description

Our ability to navigate in new environments requires the formation of neural representations that allow us to locate ourselves in that space. Recent research indicates that these location-based representations emerge in the retrosplenial cortex, highlighting the importance of this brain region in navigating in new environments. Critically, the retrosplenial cortex is one of the first brain regions to show degeneration is Alzheimer’s Disease and one of the key behavioural deficits in Alzheimer’s patients is spatial disorientation. Understanding the neural mechanisms underpinning our ability to form location-based representations in the brain is therefore a critical theoretical question that will provide the basis for understanding degeneration in Alzheimer’s Disease.

I will investigate the temporal dynamics of how these representations are formed using high-temporal precision neuroimaging (neural oscillations). We will use a novel, recently developed, experimental approach that allows me to track the emergence of spatial representations in the human brain. For the first time, I will use magnetoencephalography to understand how neural oscillations in the healthy human brain support the learning of spatial representations that allow us to navigate. The findings will provide foundations for a larger project that involves understanding the degeneration of this neural mechanism in Alzheimer's Disease.
StatusFinished
Effective start/end date1/04/2231/03/23