With the same participants

The biochemistry of flavone C-glycosides in Cereals

Project: Research project (funded)Research

Project participant(s)

Department / unit(s)


Cereal crops (wheat, rice) accumulate flavone C-glycosides as their dominant flavonoid metabolites, with these natural products having broad-ranging activities relating to crop protection and nutraceutical activity. We have recently identified a C-glycosyltransferase (CGT) in rice which catalyses their formation and have also purified the respective enzyme from wheat. We propose that this unusual capacity to form C-C bonds results from the C-glycosylation of reactive 2-hydroxyflavanone precursors formed from the action of a flavanone-2-hydroxylase. The hydroxyflavanone intermediates are then acted on by CGTs, undergoing single and double conjugations with one or more types of sugar The resulting hydroxyflavanone-C-glycosides then require the activity of a dehydratase to form the final flavone-C-glycosides. We will address questions relating to the biochemistry and regulation of this branch of flavonoid metabolism using a combination of rice and wheat as our model systems. The strategy adopted will be to use rice as a source of the CGT, flavanone 2 hydroxylase and dehydratase for mechanistic study and to identify the interaction of the enzymes with other pathway components. This is for reasons of biochemical expediency, as we can deploy proteomics tools in rice which are currently not developed in wheat. Having identified enzymes of interest we will then study the respective orthologous CGT in wheat as a species of strategic value to UK agriculture, to test for commonality of function across different cereals. Studies on the functioning of the flavone C-glycoside pathway in planta, its relationship with competing pathways of flavonoid synthesis and regulation by chemical agents will also focus on wheat.

The objectives of the programme are

Objective 1. Determine the mechanism and selectivity of CGTs from rice and wheat (0-18 months).
Objective 2. Use of selective chemical treatments to regulate flavone C-glycoside accumulation in wheat (6-12 months).
Objective 3. Study the interaction between the CGT and flavanone 2-hydroxylase (18-30 months)
Objective 4. Identify the dehydratase responsible for converting the hydroxyflavanone C-glucoside to the respective flavone conjugate (24-36 months).

Layman's description

Flavonoids are biologically important natural products found in all plants which are increasingly recognized as key nutraceuticals in a healthy diet. As staple food crops, the major cereals (wheat, rice, maize) make major contributions to our diet and all contain an unusual group of bioactive flavonoids which are joined to a sugar molecule through a carbon-carbon (C-C) bond. This is in contrast to the majority of flavonoids, which are attached to sugars through more labile carbon-oxygen (ether) linkages. An important distinction between the two classes of glycosides, is that whereas the ether glycosides are readily hydrolysed when they are ingested, the C-glycosides are not. By combining the biological activity of the flavonoids with that of the sugar component, nature has derived some unusually bioactive secondary metabolites which play a variety of roles in both the host plant and in animals which ingest them. In plants, flavone-C-glycosides have activities as antioxidants and UV-absorbing pigments and regulate interactions with microbes, insects and other plants. As trace components in our diet, they have been demonstrated to counteract inflammation and oxidative damage, though as is the case with many plant secondary products, at high doses they can have deleterious activities.
Based on their relative abundance in staple food crops and high bioactivity it is therefore surprising that unlike the flavonoid-O-glycosides whose synthesis is very well understood, that the pathways responsible for producing C-glycosides in plants have been little studied. With an interest in biotransformation reactions in plants which regulate the bioactivity of small molecules, our group has recently purified flavonoid C-glycosyltransferases (CGTs) from both rice and wheat and identified the genes encoding the respective enzymes. We now propose to study how CGTs catalyse this unusual activity and how they function with other enzymes of flavonoid metabolism to produce flavone C-glycosides. The organization of the CGT with the enzyme (flavanone 2-hydroxylase), which provides it with its substrate, and a second protein which converts the C-glycosylated intermediate to the bioactive flavone-C-glycoside is particularly important, as this mini-pathway represents a largely unrecognized means of producing flavonoids in cereals and other major crops. We will use a combination of organic chemistry, biochemistry and metabolic engineering to study the functioning of the CGT and its associated enzymes in rice and wheat. Whereas wheat is the crop of most strategic value to the UK, the better characterized and simpler genetics of rice make the latter a very useful model to apply genomic tools to study its biochemistry, with the outputs then being applied to other cereals.
Firstly we will determine how the CGT catalyses the formation of C-C bonds by investigating the mechanism of the enzyme. We will then look for other CGT activities which are responsible for adding a second C-conjugated sugar to the flavonoid. The CGT activity will then be set into the context of how it is regulated in plants. We have recently determined that a group of agrochemicals called herbicide safeners selectively control flavone C-glycoside accumulation in wheat. We can now use these chemical tools to study how this branch of flavonoid metabolism is regulated. These studies will then set the scene for examining how the CGT works with the enzymes which supply it with substrate and process its product by co-expressing the component parts of the pathway in microbial and plant host cells and monitoring the metabolites they produce in vivo. The objective of the programme is to take our understanding of the biochemistry of the flavone C-glycosyl pathway to a level where we can either rationally manipulate their accumulation in plants, or produce these bioactive metabolites in fermentable microbes.
Effective start/end date1/10/1031/03/11

Award relations

The biochemistry of flavone C-glycosides in Cereals

Edwards, R.

BBSRC: £1.00


Award date: 1/10/10

Award: UK Research Councils


  • BBSRC: £1.00

Research outputs

Discover related content

Find related publications, people, projects, datasets and more using interactive charts.

View graph of relations