2D Navier-Stokes equation in Besov spaces of negative order

Zdzislaw Brzezniak, Benedetta Ferrario

Research output: Contribution to journalArticlepeer-review

Abstract

The Navier-Stokes equation in the bidimensional torus is considered, with initial velocity in the Besov spaces B-pr(-s+2-2/r) and forcing term in L-r (0, T; B-pq(-s)) for suitable indices s, r, p, q, Results of local existence and uniqueness are proven in the case -1 < -s + 2 - 2/r < 0 and of global existence in the case -1/2 < -s + 2 - 2/r < 0. (C) 2008 Elsevier Ltd. All rights reserved.

Original languageEnglish
Pages (from-to)3902-3916
Number of pages15
JournalNonlinear analysis-Theory methods & applications
Volume70
Issue number11
DOIs
Publication statusPublished - 1 Jun 2009

Keywords

  • Navier-Stokes equations
  • Weak solutions
  • Existence uniqueness and regularity theory
  • FLUIDS
  • EULER
  • FLOWS

Cite this