By the same authors

From the same journal

A combined experimental and theoretical study of the reaction between methylglyoxal and OH/OD radical: OH regeneration

Research output: Contribution to journalArticle

Published copy (DOI)

Author(s)

  • M. Teresa Baeza-Romero
  • David R. Glowacki
  • Mark A. Blitz
  • Dwayne E. Heard
  • Michael J. Pilling
  • Andrew R. Rickard
  • Paul W. Seakins

Department/unit(s)

Publication details

JournalPhysical Chemistry Chemical Physics
DatePublished - 14 Aug 2007
Issue number31
Volume9
Number of pages15
Pages (from-to)4114-4128
Original languageEnglish

Abstract

Experimental studies have been conducted to determine the rate coefficient and mechanism of the reaction between methylglyoxal (CH3COCHO, MGLY) and the OH radical over a wide range of temperatures (233-500 K) and pressures (5-300 Torr). The rate coefficient is pressure independent with the following temperature dependence: k3(T) = (1.83 ± 0.48) × 10 -12 exp((560 ± 70)/T) cm3 molecule-1 s-1 (95% uncertainties). Addition of O2 to the system leads to recycling of OH. The mechanism was investigated by varying the experimental conditions ([O2], [MGLY], temperature and pressure), and by modelling based on a G3X potential energy surface, rovibrational prior distribution calculations and master equation RRKM calculations. The mechanism can be described as follows: MGLY + OH → H2O + CH 3COCO* (R3) CH3COCO* → CH3CO + CO (R4a) CH3COCO* → CO + CH3CO* → CH3 + CO (R4b) CH3CO + O2 → OH + other products (R5a) CH3CO + O2 + M → CH 3CO(O2) + M (R5b) Addition of oxygen to the system shows that process (4) is fast and that CH3COCO completely dissociates. The acetyl radical formed from reaction (4) reacts with oxygen to regenerate OH radicals (5a). However, a significant fraction of acetyl radical formed by reaction (R4) is sufficiently energised to dissociate further to CH3 + CO (R4b). Little or no pressure quenching of reaction (R4b) was observed. The rate coefficient for OD + MGLY was measured as k9(T) = (9.4 ± 2.4) × 10-13 exp((780 ± 70)/T) cm3 molecule-1 s-1 over the temperature range 233-500 K. The reaction shows a noticeable inverse (kH/kD < 1) kinetic isotope effect below room temperature and a slight normal kinetic isotope effect (kH/kD > 1) at high temperature. The potential atmospheric implications of this work are discussed.

Discover related content

Find related publications, people, projects, datasets and more using interactive charts.

View graph of relations