By the same authors

From the same journal

A conceptual and computational framework for modelling and understanding the nonequilibrium gene regulatory networks of mouse embryonic stem cells

Research output: Contribution to journalArticle

Full text download(s)

Published copy (DOI)

Author(s)

Department/unit(s)

Publication details

JournalPLoS Computational Biology
DateAccepted/In press - 4 Aug 2017
DatePublished (current) - 1 Sep 2017
Issue number9
Volume13
Number of pages24
Original languageEnglish

Abstract

The capacity of pluripotent embryonic stem cells to differentiate into any cell type in the body makes them invaluable in the field of regenerative medicine. However, because of the complexity of both the core pluripotency network and the process of cell fate computation it is not yet possible to control the fate of stem cells. We present a theoretical model of stem cell fate computation that is based on Halley and Winkler’s Branching Process Theory (BPT) and on Greaves et al.’s agent-based computer simulation derived from that theoretical model. BPT abstracts the complex production and action of a Transcription Factor (TF) into a single critical branching process that may dissipate, maintain, or become supercritical. Here we take the single TF model and extend it to multiple interacting TFs, and build an agent-based simulation of multiple TFs to investigate the dynamics of such coupled systems. We have developed the simulation and the theoretical model together, in an iterative manner, with the aim of obtaining a deeper understanding of stem cell fate computation, in order to influence experimental efforts, which may in turn influence the outcome of cellular differentiation. The model used is an example of self-organization and could be more widely applicable to the modelling of other complex systems. The simulation based on this model, though currently limited in scope in terms of the biology it represents, supports the utility of the Halley and Winkler branching process model in describing the behaviour of stem cell gene regulatory networks. Our simulation demonstrates three key features: (i) the existence of a critical value of the branching process parameter, dependent on the details of the cistrome in question; (ii) the ability of an active cistrome to “ignite” an otherwise fully dissipated cistrome, and drive it to criticality; (iii) how coupling cistromes together can reduce their critical branching parameter values needed to drive them to criticality.

Bibliographical note

©2017 Greaves et al.

Discover related content

Find related publications, people, projects, datasets and more using interactive charts.

View graph of relations