By the same authors

From the same journal

From the same journal

A group-theoretical interpretation of the word problem for free idempotent generated semigroups

Research output: Contribution to journalArticlepeer-review



Publication details

JournalAdvances in Mathematics
DateAccepted/In press - 9 Jan 2019
DateE-pub ahead of print - 25 Jan 2019
DatePublished (current) - 17 Mar 2019
Number of pages44
Pages (from-to)998-1041
Early online date25/01/19
Original languageEnglish


The set of idempotents of any semigroup carries the structure of a biordered set, which contains a great deal of information concerning the idempotent generated subsemigroup of the semigroup in question. This leads to the construction of a free idempotent generated semigroup IG(E) – the ‘free-est’ semigroup with a given biordered set E of idempotents. We show that when E is finite, the word problem for IG(E) is equivalent to a family of constraint satisfaction problems involving rational subsets of direct products of pairs of maximal subgroups of IG(E). As an application, we obtain decidability of the word problem for an important class of examples. Also, we prove that for finite E, IG(E) is always a weakly abundant semigroup satisfying the congruence condition.

Bibliographical note

© 2019 Elsevier Inc. This is an author-produced version of the published paper. Uploaded in accordance with the publisher’s self-archiving policy.

    Research areas

  • Biordered set, Free idempotent generated semigroup, Rational subset, Word problem

Discover related content

Find related publications, people, projects, datasets and more using interactive charts.

View graph of relations