By the same authors

From the same journal

From the same journal

A practical and flexible implementation of 3D MRI in the Earth's magnetic field

Research output: Contribution to journalArticlepeer-review

Published copy (DOI)


  • Meghan E. Halse
  • Andrew Coy
  • Robin Dykstra
  • Craig Eccles
  • Mark Hunter
  • Rob Ward
  • Paul T. Callaghan


Publication details

JournalJournal of Magnetic Resonance
DateE-pub ahead of print - 7 Jul 2006
DatePublished (current) - Sep 2006
Issue number1
Number of pages9
Pages (from-to)75-83
Early online date7/07/06
Original languageEnglish


The Earth's magnetic field, though weak, is appealing for NMR applications because it is highly homogeneous, globally available and free. However, the practicality of Earth's field NMR (EFNMR) has long been limited by the need to perform experiments in outdoor locations where the local field homogeneity is not disrupted by ferrous or magnetic objects and where ultra-low frequency (ULF) noise sources are at a minimum. Herein we present a flexible and practical implementation of MRI in the Earth's magnetic field that demonstrates that EFNMR is not as difficult as it was previously thought to be. In this implementation, pre-polarization and ULF noise shielding, achieved using a crude electromagnet, are used to significantly improve signal-to-noise ratio (SNR) even in relatively noisy environments. A three axis gradient coil set, in addition to providing imaging gradients, is used to provide first-order shims such that sub-hertz linewidths can routinely be achieved, even in locations of significant local field inhomogeneity such as indoor scientific laboratories. Temporal fluctuations in the magnitude of the Earth's magnetic field are measured and a regime found within which these variations in Larmor frequency produce no observable artefacts in reconstructed images.

    Research areas

  • MRI, Imaging, EFNMR, Earth's magnetic field

Discover related content

Find related publications, people, projects, datasets and more using interactive charts.

View graph of relations