TY - JOUR
T1 - A Reinforcement Learning Based Auto-Scaling Approach for SaaS Providers in Dynamic Cloud Environment
AU - Wei, Yi
AU - Kudenko, Daniel
AU - Liu, Shijun
AU - Pan, Li
AU - Wu, Lei
AU - Meng, Xiangxu
N1 - © 2019 Yi Wei et al.
PY - 2019/2/3
Y1 - 2019/2/3
N2 - Cloud computing is an emerging paradigm which provides a flexible and diversified trading market for Infrastructure-as-a-Service (IaaS) providers, Software-as-a-Service (SaaS) providers, and cloud-based application customers. Taking the perspective of SaaS providers, they offer various SaaS services using rental cloud resources supplied by IaaS providers to their end users. In order to maximize their utility, the best behavioural strategy is to reduce renting expenses as much as possible while providing sufficient processing capacity to meet customer demands. In reality, public IaaS providers such as Amazon offer different types of virtual machine (VM) instances with different pricing models. Moreover, service requests from customers always change as time goes by. In such heterogeneous and changing environments, how to realize application auto-scaling becomes increasingly significant for SaaS providers. In this paper, we first formulate this problem and then propose a Q-learning based self-adaptive renting plan generation approach to help SaaS providers make efficient IaaS facilities adjustment decisions dynamically. Through a series of experiments and simulation, we evaluate the auto-scaling approach under different market conditions and compare it with two other resource allocation strategies. Experimental results show that our approach could automatically generate optimal renting policies for the SaaS provider in the long run.
AB - Cloud computing is an emerging paradigm which provides a flexible and diversified trading market for Infrastructure-as-a-Service (IaaS) providers, Software-as-a-Service (SaaS) providers, and cloud-based application customers. Taking the perspective of SaaS providers, they offer various SaaS services using rental cloud resources supplied by IaaS providers to their end users. In order to maximize their utility, the best behavioural strategy is to reduce renting expenses as much as possible while providing sufficient processing capacity to meet customer demands. In reality, public IaaS providers such as Amazon offer different types of virtual machine (VM) instances with different pricing models. Moreover, service requests from customers always change as time goes by. In such heterogeneous and changing environments, how to realize application auto-scaling becomes increasingly significant for SaaS providers. In this paper, we first formulate this problem and then propose a Q-learning based self-adaptive renting plan generation approach to help SaaS providers make efficient IaaS facilities adjustment decisions dynamically. Through a series of experiments and simulation, we evaluate the auto-scaling approach under different market conditions and compare it with two other resource allocation strategies. Experimental results show that our approach could automatically generate optimal renting policies for the SaaS provider in the long run.
U2 - 10.1155/2019/5080647
DO - 10.1155/2019/5080647
M3 - Article
VL - 2019
JO - Mathematical Problems in Engineering
JF - Mathematical Problems in Engineering
SN - 1563-5147
M1 - 5080647
ER -