A theoretical basis for spontaneous polarization transfer in non-hydrogenative parahydrogen-induced polarization

Ralph W. Adams, Simon B. Duckett, Richard A. Green, David C. Williamson, Gary G. R. Green

Research output: Contribution to journalArticlepeer-review

Abstract

When parahydrogen adds to a metal template containing a substrate of interest, the substrate and parahydrogen become coupled, and polarization is shared between the two without the incorporation of the parahydrogen into the substrate. A mechanism for this polarization transfer is presented in which the transfer is propagated through the scalar couplings. At zero field, polarization is transferred between two-, three-, and four-spin zero quantum states, but no single spin magnetization is created. The interplay between the chemical shift evolution and the evolution under scalar coupling at non-zero field generates additional longitudinal spin order and now includes single spin longitudinal z-magnetization. The additional chemical shift interaction introduces a field dependency to the nuclear spin states of the polarized substrate. The net effect of the polarization field strength on the resultant nuclear spin states is shown to be predictable but complex.

Original languageEnglish
Article number194505
Pages (from-to)1-15
Number of pages15
JournalJournal of Chemical Physics
Volume131
Issue number19
DOIs
Publication statusPublished - 21 Nov 2009

Keywords

  • chemical shift
  • hydrogen
  • magnetisation
  • NUCLEAR-SPIN STATES
  • LONG-LIVED STATES
  • SOLUTION NMR
  • MAGNETIC-FIELD
  • 4-SPIN SYSTEMS
  • HYPERPOLARIZATION
  • MOLECULES
  • RESONANCE
  • ALIGNMENT
  • 3-SPIN
  • Euromar

    Simon B. Duckett (Invited speaker)

    1 Jul 2012

    Activity: Participating in or organising an eventConference participation

Cite this