By the same authors

From the same journal

From the same journal

A unifying explanation for variation in ozone sensitivity among woody plants

Research output: Contribution to journalArticle

Full text download(s)

Published copy (DOI)

Author(s)

Department/unit(s)

Publication details

JournalGlobal Change Biology
DateAccepted/In press - 25 Jun 2017
DateE-pub ahead of print (current) - 11 Aug 2017
Number of pages7
Pages (from-to)1-7
Early online date11/08/17
Original languageEnglish

Abstract

Abstract

Tropospheric ozone is considered the most detrimental air pollutant for vegetation at the global scale, with negative consequences for both provisioning and climate regulating ecosystem services. In spite of recent developments in ozone exposure metrics, from a concentration-based to a more physiologically relevant stomatal flux-based index, large-scale ozone risk assessment is still complicated by a large and unexplained variation in ozone sensitivity among tree species. Here, we explored whether the variation in ozone sensitivity among woody species can be linked to interspecific variation in leaf morphology. We found that ozone tolerance at the leaf level was closely linked to leaf dry mass per unit leaf area (LMA) and that whole-tree biomass reductions were more strongly related to stomatal flux per unit leaf mass (r2 = 0.56) than to stomatal flux per unit leaf area (r2 = 0.42). Furthermore, the interspecific variation in slopes of ozone flux–response relationships was considerably lower when expressed on a leaf mass basis (coefficient of variation, CV = 36%) than when expressed on a leaf area basis (CV = 66%), and relationships for broadleaf and needle-leaf species converged when using the mass-based index. These results show that much of the variation in ozone sensitivity among woody plants can be explained by interspecific variation in LMA and that large-scale ozone impact assessment could be greatly improved by considering this well-known and easily measured leaf trait.

Bibliographical note

© 2017 John Wiley & Sons Ltd. This is an author-produced version of the published paper. Uploaded in accordance with the publisher’s self-archiving policy. Further copying may not be permitted; contact the publisher for details.

    Research areas

  • leaf mass per area, ozone flux–response relationships, ozone risk assessment, stomatalconductance, stomatal ozone uptake, woody species

Discover related content

Find related publications, people, projects, datasets and more using interactive charts.

View graph of relations