Projects per year
Abstract
Iodine at the ocean's surface impacts climate and health by removing ozone (O3) from the troposphere both directly via ozone deposition to seawater and indirectly via the formation of iodine gases that are released into the atmosphere. Here we present a new box model of the ocean surface microlayer that couples oceanic O3 dry deposition to inorganic chemistry to predict inorganic iodine emissions. This model builds on the previous work of Carpenter et al. (2013), improving both chemical and physical processes. This new box model predicts iodide depletion in the top few micrometres of the ocean surface due to rapid chemical loss to ozone competing with replenishment from underlying water. From this box model, we produce parameterized equations for HOI and I2 emissions, which are implemented into the global chemical transport model GEOS-Chem along with an updated sea surface iodide climatology. Compared to the previous model, inorganic iodine emissions from some tropical waters decrease by as much as half, while higher-latitude emissions increase by a factor of ≫10. With these large local changes, global total inorganic iodine emissions increased by ∼49 % (2.99 to 4.48 Tg) compared to the previous parameterization. This results in a negligible change in average tropospheric OH (<0.2 %) and tropospheric methane lifetime (<0.2 %). The annual mean tropospheric O3 burden decreases (−1.5 % to 325 Tg); however, higher-latitude surface O3 concentrations decrease by as much as 20 %.
Original language | English |
---|---|
Pages (from-to) | 9899-9921 |
Number of pages | 23 |
Journal | Atmospheric Chemistry and Physics |
Volume | 24 |
Issue number | 17 |
DOIs | |
Publication status | Published - 9 Sept 2024 |
Bibliographical note
© Author(s) 2024.Keywords
- Ozone
- Iodide
- Ocean
- Sea surface microlayer
Projects
- 1 Active
-
O3-SML: Ozone dry deposition to the sea surface microlayer
Carpenter, L. J. (Principal investigator), Evans, M. J. (Co-investigator), Hughes, C. (Co-investigator) & Lee, J. D. (Co-investigator)
1/10/19 → 30/09/25
Project: Research project (funded) › Research
Datasets
-
Coupled Ocean Atmosphere Gas Exchange Model Sensitivity Analysis
Pound, R. (Creator), Carpenter, L. J. (Contributor) & Evans, M. J. (Contributor), University of York, 25 Oct 2023
DOI: 10.15124/e377ffa4-ede9-490d-8a65-95f3b6d61137
Dataset