Analysing online reviews to investigate customer behaviour in the sharing economy: The case of Airbnb

Research output: Contribution to journalArticlepeer-review

Author(s)

Department/unit(s)

Publication details

JournalInformation Technology and People
DateAccepted/In press - 6 May 2019
DatePublished (current) - 30 Jul 2019
Number of pages17
Original languageEnglish

Abstract

Purpose: The purpose of this paper is to investigate attributes that influence Airbnb customer experience by analysing online reviews from users staying in London. It presents a text mining approach to identify a set of broad themes from the textual reviews. It aims to highlight the customers’ changing perception of good quality of accommodations. Design/methodology/approach: This paper analyses 169,666 reviews posted by Airbnb users who stayed in London from 2011 to 2015. Hierarchical clustering algorithms are used to group similar words into clusters based on their co-occurrence. Longitudinal analysis and seasonal analysis are conducted for a more coherent understanding of the Airbnb customer behaviour. Findings: This paper provides empirical insights about how Airbnb users’ mindset of good quality of accommodations changes over a five-year timespan and in different seasons. While there are common attributes considered important throughout the years, exclusive attributes are discovered in particular years and seasons. Research limitations/implications: This paper is confined to Airbnb experiences in London. Researchers are encouraged to apply the proposed methodology to investigate Airbnb experiences in other cities and detect any change in customer perception of quality stay. Practical implications: This paper offers implications for the prioritisation of customer concerns to design and improve services offerings and for alignment of services with customer expectations in the sharing economy. Originality/value: This paper fulfils an identified need to examine the change in customer expectation across the timespan and seasons in the case of Airbnb. It also contributes by illustrating how big data can be used to uncover key attributes that facilitate the engagement with the sharing economy.

Bibliographical note

© 2019, Emerald Publishing Limited. This is an author-produced version of the published paper. Uploaded in accordance with the publisher’s self-archiving policy. Further copying may not be permitted; contact the publisher for details.

    Research areas

  • Airbnb, Business intelligence, Consumer behaviour, Online review, Sharing economy, Social media, Text analysis, Text mining

Discover related content

Find related publications, people, projects, datasets and more using interactive charts.

View graph of relations