TY - JOUR
T1 - Analyzing latency-aware self-adaptation using stochastic games and simulations
AU - Camara Moreno, Javier
AU - Moreno, Gabriel A.
AU - Garlan, David
AU - Schmerl, Bradley
PY - 2016/2/3
Y1 - 2016/2/3
N2 - Self-adaptive systems must decide which adaptations to apply and when. In reactive approaches, adaptations are chosen and executed after some issue in the system has been detected (e.g., unforeseen attacks or failures). In proactive approaches, predictions are used to prepare the system for some future event (e.g., traffic spikes during holidays). In both cases, the choice of adaptation is based on the estimated impact it will have on the system. Current decision-making approaches assume that the impact will be instantaneous, whereas it is common that adaptations take time to produce their impact. Ignoring this latency is problematic because adaptations may not achieve their effect in time for a predicted event. Furthermore, lower impact but quicker adaptations may be ignored altogether, even if over time the accrued impact is actually higher. In this article, we introduce a novel approach to choosing adaptations that considers these latencies. To show how this improves adaptation decisions, we use a two-pronged approach: (i) model checking of Stochastic Multiplayer Games (SMGs) enables us to understand best- and worst-case scenarios of optimal latency-aware and non-latency-aware adaptation without the need to develop specific adaptation algorithms.However, since SMGs do not provide an algorithm to make choices at runtime, we propose a (ii) latency-aware adaptation algorithm to make decisions at runtime. Simulations are used to explore more detailed adaptation behavior and to check if the performance of the algorithm falls within the bounds predicted by SMGs. Our results show that latency awareness improves adaptation outcomes and also allows a larger set of adaptations to be exploited.
AB - Self-adaptive systems must decide which adaptations to apply and when. In reactive approaches, adaptations are chosen and executed after some issue in the system has been detected (e.g., unforeseen attacks or failures). In proactive approaches, predictions are used to prepare the system for some future event (e.g., traffic spikes during holidays). In both cases, the choice of adaptation is based on the estimated impact it will have on the system. Current decision-making approaches assume that the impact will be instantaneous, whereas it is common that adaptations take time to produce their impact. Ignoring this latency is problematic because adaptations may not achieve their effect in time for a predicted event. Furthermore, lower impact but quicker adaptations may be ignored altogether, even if over time the accrued impact is actually higher. In this article, we introduce a novel approach to choosing adaptations that considers these latencies. To show how this improves adaptation decisions, we use a two-pronged approach: (i) model checking of Stochastic Multiplayer Games (SMGs) enables us to understand best- and worst-case scenarios of optimal latency-aware and non-latency-aware adaptation without the need to develop specific adaptation algorithms.However, since SMGs do not provide an algorithm to make choices at runtime, we propose a (ii) latency-aware adaptation algorithm to make decisions at runtime. Simulations are used to explore more detailed adaptation behavior and to check if the performance of the algorithm falls within the bounds predicted by SMGs. Our results show that latency awareness improves adaptation outcomes and also allows a larger set of adaptations to be exploited.
KW - Latency
KW - Latency-aware
KW - Proactive adaptation
KW - Stochastic multiplayer games
UR - http://www.scopus.com/inward/record.url?scp=84966356268&partnerID=8YFLogxK
U2 - 10.1145/2774222
DO - 10.1145/2774222
M3 - Article
AN - SCOPUS:84966356268
SN - 1556-4665
VL - 10
JO - ACM Transactions on Autonomous and Adaptive Systems
JF - ACM Transactions on Autonomous and Adaptive Systems
IS - 4
M1 - 23
ER -