## Abstract

This paper may be regarded as a sequel to our earlier paper [19], where we give an elementary and self-contained proof of a very general form of the Hopf theorem on order-preserving linear operators in partially ordered vector spaces (reproduced here as Theorem 1·1).

Versions of this theorem and related ideas have been used by various authors to study both linear and nonlinear integral equations (Thompson [41], Bushell [9, 11], Potter [38, 39], Eveson [16, 17], Bushell and Okrasiriski [12, 13]); the convergence properties of nonlinear maps (Nussbaum [32, 33]); so-called DAD theorems (Borwein, Lewis and Nussbaum [8]) and in the proof of weak ergodic theorems (Fujimoto and Krause [20], Nussbaum [34]).

Versions of this theorem and related ideas have been used by various authors to study both linear and nonlinear integral equations (Thompson [41], Bushell [9, 11], Potter [38, 39], Eveson [16, 17], Bushell and Okrasiriski [12, 13]); the convergence properties of nonlinear maps (Nussbaum [32, 33]); so-called DAD theorems (Borwein, Lewis and Nussbaum [8]) and in the proof of weak ergodic theorems (Fujimoto and Krause [20], Nussbaum [34]).

Original language | English |
---|---|

Pages (from-to) | 491-512 |

Number of pages | 22 |

Journal | Math Proc Camb Phil Soc |

Volume | 117 |

Issue number | 3 |

DOIs | |

Publication status | Published - 1995 |

## Keywords

- Analysis