Building Custom Polysaccharides in Vitro with an Efficient, Broad-Specificity Xyloglucan Glycosynthase and a Fucosyltransferase

Oliver Spadiut, Farid M. Ibatullin, Jonelle Peart, Fredrika Gullfot, Carlos Martinez-Fleites, Marcus Ruda, Chunlin Xu, Gustav Sundqvist, Gideon J. Davies, Harry Brumer*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

The current drive for applications of biomass-derived compounds, for energy and advanced materials, has led to a resurgence of interest in the manipulation of plant polymers. The xyloglucans, a family of structurally complex plant polysaccharides, have attracted significant interest due to their intrinsic high affinity for cellulose, both in muro and in technical applications. Moreover, current cell wall models are limited by the lack of detailed structure-property relationships of xyloglucans, due to a lack of molecules with well-defined branching patterns. Here, we have developed a new, broad-specificity "xyloglucan glycosynthase", selected from active-site mutants of a bacterial endoxyloglucanase, which catalyzed the synthesis of high molar mass polysaccharides, with complex side-chain structures, from suitable glycosyl fluoride donor substrates. The product range was further extended by combination with an Arabidopsis thaliana alpha(1 -> 2)-fucosyltransferase to achieve the in vitro synthesis of fucosylated xyloglucans typical of dicot primary cell walls. These enzymes thus comprise a toolkit for the controlled enzymatic synthesis of xyloglucans that are otherwise impossible to obtain from native sources. Moreover, this study demonstrates the validity of a chemo-enzymatic approach to polysaccharide synthesis, in which the simplicity and economy of glycosynthase technology is harnessed together with the exquisite specificity of glycosyltransferases to control molecular complexity.

Original languageEnglish
Pages (from-to)10892-10900
Number of pages9
JournalJournal of the American Chemical Society
Volume133
Issue number28
DOIs
Publication statusPublished - 20 Jul 2011

Keywords

  • ENDO-TRANSGLYCOSYLASE
  • PLANT
  • MUTANT
  • BIOSYNTHESIS
  • CELLULOSE
  • CELL-WALL
  • ARABIDOPSIS
  • GLYCOSIDASES
  • CRYSTALLINE
  • OLIGOSACCHARIDE SYNTHESIS

Cite this