Research output: Chapter in Book/Report/Conference proceeding › Other chapter contribution

Title of host publication | Studies in Lie Theory: Dedicated to A. Joseph on his Sixtieth Birthday |
---|---|

Date | Published - 2006 |

Pages | 417-441 |

Number of pages | 25 |

Volume | 243 |

Edition | Part II |

Original language | English |

ISBN (Electronic) | 978-0-8176-4478-9 |

Consider the complex matrix Lie superalgebra $ \mathfrak{g}\mathfrak{l}_{\left. N \right|N} $Unknown control sequence '\mathfrak' with the standard generators E ij where i, j = ±1, . . . , ± N. Define an involutive automorphism ¿ of $ \mathfrak{g}\mathfrak{l}_{\left. N \right|N} $Unknown control sequence '\mathfrak' by ¿(E ij) = E -i,-j . The queer Lie superalgebra qN is the fixed point subalgebra in $ \mathfrak{g}\mathfrak{l}_{\left. N \right|N} $Unknown control sequence '\mathfrak' relative to ¿. Consider the twisted polynomial current Lie superalgebra

$ \mathfrak{g} = \left\{ {X\left( t \right) \in \mathfrak{g}\mathfrak{l}_{\left. N \right|N} \left[ t \right]:\eta \left( {X\left( t \right)} \right) = X\left( { - t} \right)} \right\} $Unknown control sequence '\mathfrak'

. The enveloping algebra U( $ \mathfrak{g} $Unknown control sequence '\mathfrak' ) of the Lie superalgebra g has a deformation, called the Yangian of qN. For each M = 1,2, . . . , denote by A N M the centralizer of qM ¿ q N+M in the associative superalgebra U(q N+M ). In this article we construct a sequence of surjective homomorphisms U(qN) ¿ A N 1 ¿ A N 2 ¿ . . . . We describe the inverse limit of the sequence of centralizer algebras A N 1 , A N 2 , . . . in terms of the Yangian of qN.

$ \mathfrak{g} = \left\{ {X\left( t \right) \in \mathfrak{g}\mathfrak{l}_{\left. N \right|N} \left[ t \right]:\eta \left( {X\left( t \right)} \right) = X\left( { - t} \right)} \right\} $Unknown control sequence '\mathfrak'

. The enveloping algebra U( $ \mathfrak{g} $Unknown control sequence '\mathfrak' ) of the Lie superalgebra g has a deformation, called the Yangian of qN. For each M = 1,2, . . . , denote by A N M the centralizer of qM ¿ q N+M in the associative superalgebra U(q N+M ). In this article we construct a sequence of surjective homomorphisms U(qN) ¿ A N 1 ¿ A N 2 ¿ . . . . We describe the inverse limit of the sequence of centralizer algebras A N 1 , A N 2 , . . . in terms of the Yangian of qN.

- Algebra

Find related publications, people, projects, datasets and more using interactive charts.