Characterization of silicon based photovoltaic cells using broadband impedance spectroscopy

Olufemi I. Olayiwola, Paul S. Barendse

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The growth in photovoltaic installations makes characterization and condition monitoring essential. In this paper, broadband impedance spectroscopy is implemented for characterization and performance monitoring of silicon solar cells for near real-time operation. An optimized quasi-logarithmic broadband signal is designed to estimate the impedance response of the cells. Electrochemical equivalent circuits of the frequency response are then modelled from the obtained Nyquist plots and the cell parameters are extracted using complex nonlinear least squares. This procedure can be applied for direct estimation of the internal parameters of the silicon solar cells/module at different operating points. Results show that the implemented broadband characterization yields good correlation to the conventional electrochemical impedance spectroscopy at significantly reduced procedural time and equipment cost.

Original languageEnglish
Title of host publicationECCE 2016 - IEEE Energy Conversion Congress and Exposition, Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781509007370
DOIs
Publication statusPublished - 2016
Event2016 IEEE Energy Conversion Congress and Exposition, ECCE 2016 - Milwaukee, United States
Duration: 18 Sept 201622 Sept 2016

Publication series

NameECCE 2016 - IEEE Energy Conversion Congress and Exposition, Proceedings

Conference

Conference2016 IEEE Energy Conversion Congress and Exposition, ECCE 2016
Country/TerritoryUnited States
CityMilwaukee
Period18/09/1622/09/16

Bibliographical note

Publisher Copyright:
© 2016 IEEE.

Keywords

  • broadband
  • characterization
  • impedance
  • optimization
  • Photovoltaic
  • silicon

Cite this