By the same authors

From the same journal

From the same journal

Chimeric 14-3-3 proteins for unraveling interactions with intrinsically disordered partners

Research output: Contribution to journalArticle

Author(s)

Department/unit(s)

Publication details

JournalScientific Reports
DateAccepted/In press - 5 Sep 2017
DatePublished (current) - 20 Sep 2017
Issue number1
Volume7
Number of pages12
Original languageEnglish

Abstract

In eukaryotes, several "hub" proteins integrate signals from different interacting partners that bind through intrinsically disordered regions. The 14-3-3 protein hub, which plays wide-ranging roles in cellular processes, has been linked to numerous human disorders and is a promising target for therapeutic intervention. Partner proteins usually bind via insertion of a phosphopeptide into an amphipathic groove of 14-3-3. Structural plasticity in the groove generates promiscuity allowing accommodation of hundreds of different partners. So far, accurate structural information has been derived for only a few 14-3-3 complexes with phosphopeptide-containing proteins and a variety of complexes with short synthetic peptides. To further advance structural studies, here we propose a novel approach based on fusing 14-3-3 proteins with the target partner peptide sequences. Such chimeric proteins are easy to design, express, purify and crystallize. Peptide attachment to the C terminus of 14-3-3 via an optimal linker allows its phosphorylation by protein kinase A during bacterial co-expression and subsequent binding at the amphipathic groove. Crystal structures of 14-3-3 chimeras with three different peptides provide detailed structural information on peptide-14-3-3 interactions. This simple but powerful approach, employing chimeric proteins, can reinvigorate studies of 14-3-3/phosphoprotein assemblies, including those with challenging low-affinity partners, and may facilitate the design of novel biosensors.

Bibliographical note

© The Author(s) 2017

    Research areas

  • Journal Article

Discover related content

Find related publications, people, projects, datasets and more using interactive charts.

View graph of relations