Classification of self-assembling protein nanoparticle architectures for applications in vaccine design

Research output: Contribution to journalArticlepeer-review


We introduce here a mathematical procedure for the structural classification of a specific class of self-assembling protein nanoparticles (SAPNs) that are used as a platform for repetitive antigen display systems. These SAPNs have distinctive geometries as a consequence of the fact that their peptide building blocks are formed from two linked coiled coils that are designed to assemble into trimeric and pentameric clusters. This allows a mathematical description of particle architectures in terms of bipartite (3,5)-regular graphs. Exploiting the relation with fullerene graphs, we provide a complete atlas of SAPN morphologies. The classification enables a detailed understanding of the spectrum of possible particle geometries that can arise in the self-assembly process. Moreover, it provides a toolkit for a systematic exploitation of SAPNs in bioengineering in the context of vaccine design, predicting the density of B-cell epitopes on the SAPN surface, which is critical for a strong humoral immune response.
Original languageEnglish
Article number161092
Number of pages12
JournalRoyal Society Open Science
Publication statusPublished - 26 Apr 2017

Bibliographical note

© 2017 The Authors.


  • graph theory
  • symmetry
  • nanoparticle
  • fullerene
  • antigen display

Cite this