Abstract
The molecular structure of trimethylgermane has been determined by gas electron diffraction experiments. Infrared spectra for the gaseous, liquid, and solid phases were also recorded. Parallel and perpendicular polarized Raman spectra for the liquid were measured to obtain depolarization values. The experimental studies were supported by a series of computational calculations using HF, B3LYP, and MP2 methods and a variety of basis sets. The force fields obtained from density functional theory using both B3LYP/6-31G; and B3LYP/ 6-311+G; ; were scaled with both Pulay's SQM methodology and Yoshida's WLS procedure to simulate the vibrational spectra and assist in the assignment of fundamental bands. The Raman intensities were obtained from polarizability derivatives. The vibrational spectra of trimethylgermane were completely assigned on the basis of the experimental data and the theoretical prediction of vibrational frequencies and intensities. © 2009 American Chemical Society.
Original language | Undefined/Unknown |
---|---|
Pages (from-to) | 5195-5204 |
Number of pages | 10 |
Journal | Journal of Physical Chemistry A |
Volume | 113 |
Issue number | 17 |
DOIs | |
Publication status | Published - 30 Apr 2009 |
Bibliographical note
Export Date: 1 October 2013Source: Scopus
CODEN: JPCAF
doi: 10.1021/jp810988s
PubMed ID: 19298067
Language of Original Document: English
Correspondence Address: Altabef, A. B.; INQUINOA, CONICET, Universidad Nacional de Tucuman, San Lorenzo 456, T4000CAN Tucuman, Argentina; email: [email protected]
Chemicals/CAS: Gases; Organometallic Compounds; trimethylgermane
References: Fish, R.H., Kuivila, H.G., (1966) J. Org. Chem., 31, p. 2445; Piers, E., Lemieux, R., (1995) J. Chem. Soc., Perkin Trans. 1, p. 3; Piers, E., Lemieux, R., (1995) Oreanomet., 14, p. 5011; Spivey, A.C., Gripton, C.J.G., Noban, C., Parr, N.J., (2005) Synlett, 14, p. 2167; Coates, D., Tedder, J.M., (1978) J. Am. Soc., Perkin Trans., 11, p. 725; Reicl, J., Reichl, J.A., Popoff, C.M., Gallagher, L.A., Remsen, E.E., Berry, D.H., (1996) J. Am. Chem. Soc., 118, p. 9430; Patent application S.N 60/742,691Zhang, Q., Zhang, D., Wang, S., Gu, Y., (2002) J. Phys. Chem. A, 106, p. 122; Arthur, N.L., Miles, L.A., (1998) Chem. Phys. Lett., 295, p. 531; Durig, J.R., Cheng, M.M., Li, Y.S., Turner, J.B., (1973) J. Phys. Chem., 77 (2), p. 227; Van De Vondel, D.F., Van Der Kelen, G.P., (1965) Bull. Soc. Chim. Belg., 74, p. 467; Imai, Y., Aida, K., (1981) Bull. Chem. Soc. Jpn., 54, p. 3323; Egorochkin, A.N., Khorshev, S.Y., Ostasheva, N.S., Sevasty-anova, E.I., (1976) J. Oreanomet. Chem., 105, p. 311; McKean, D.C., Torto, I., Morrison, A.R., (1982) J. Phys. Chem., 86 (3), p. 307; McKean, D.C., MacKenzie, M.W., Morrison, A.R., (1984) J. Mol. Struct., 116, p. 331; Pulay, P., Fogarasi, G., Pongor, G., Boggs, J.E., Vargha, A., (1983) J. Am. Chem. Soc., 105, p. 7037; Rauhut, G., Pulay, P., (1995) J. Phys. Chem., 99, p. 3093; Rauhut, G., Pulay, P., (1995) J. Phys. Chem., 99, p. 14572; Kalincsak, F., Pongor, G., (2002) Spectrochim. Acta A, 58, p. 999; Yoshida, H., Takeda, K., Okamura, J., Ehara, A., Matsuura, H., (2002) J. Phys. Chem., 106, p. 3580; Huntley, C.M., Laurenson, G.S., Rankin, D.W.H., (1980) J. Chem. Soc., Dalton Trans., 954; Fleischer, H., Wann, D.A., Hinchley, S.L., Borisenko, K.B., Lewis, J.R., Mawhorter, R.J., Robertson, H.E., Rankin, D.W.H., (2005) Dalton Trans., 3221; Hinchley, S.L., Robertson, H.E., Borisenko, K.B., Turner, A.R., Johnston, B.F., Rankin, D.W.H., Ahmadian, M., Cowley, A.H., (2004) Dalton Trans., 2469; Ross, A.W., Fink, M., Hilderbrandt, R., (1992) International Tables for Crystallography, C, p. 245. , Wilson, A. J. C., Ed.; Kluwer Academic Publishers: Dordrecht, Boston, and London; Kauppinen, J.K., Moffatt, D.J., Mantsh, H.H., Cameron, D.G., (1981) Appl Sepctrosc., 35, p. 271; Kauppinen, J.K., Moffatt, D.J., Cameron, D.G., Mantsh, H.H., (1981) Appl. Opt., 20, p. 1866; Kauppinen, J.K., Moffatt, D.J., Holberg, M.R., Mantsh, H.H., (1991) Appl. Spectrosc., 45, p. 411; Griffiths, P.R., Pierce, J.A., Hongjin, G., (1989) Computer-Enhanced Analytical Spectroscopy, , Meuzelaar, H. L. C., Isenhour, T. L., Ed.; Plenum Press: New York; Chapter 2; Friesen, W.I., Michaelian, K.H., (1991) Appl. Spectrosc., 45, p. 50; Michaelian, K.H., Friesen, W.I., Yariv, S., Nasser, A., (1991) Can. J. Chem., 69, p. 1786; Spectrum Version 5.3, Elmer, Inc., 2005Montejo, M., Hinchley, S.L., Ben Altabef, A., Robertson, H.E., Urena, F.P., Rankin, D.W.H., Lopez-Gonzalez, J.J., (2006) Phys. Chem. Chem. Phys., 8, p. 1; Roldán, M.L., Brandan, S.A., Masters, L.S., Wann, D.A., Robertson, H.E., Rankin, D.W.H., Ben Altabef, (2007) A. J. Phys. Chem. A, p. 7200; Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery Jr., A.J., Pople, J.A., (2003) Gaussian03, revision B.01, , Gaussian, Inc.: Pittsburgh PA; Sipachev, V.A., (1985) J. Mol. Struct. (THEOCHEM), 121, p. 143; Fogara, G., Zhou, X., Taylor, P.W., Pulay, P., (1992) J. Am. Chem. Soc., 114, p. 8191; Collier, W.B., (1992) Program FCARTP (QCPE 631), , Department of Chemistry, Oral Roberts University, Tulsa, OK; Keresztury, G., Holly, S., Varga, J., Besenyei, G., Wang, A.Y., Durig, J.R., (1993) Spectrochim. Acta A, 49, p. 2007; Navarro, A., Lopez Gonzalez, J.J., Garcia Fernandez, A., Laczick, I., Pongor, G., (2005) Chem. Phys., 313, p. 279; McLellan, A.L., (1963) Tables of Experimental Dipole Moments, , W.H. Freeman: London; Brain, P.T., Morrison, C.A., Parsons, S., Rankin, D.W.H., (1996) J. Chem. Soc., Dalton Trans., 4589; Blake, A.J., Brain, P.T., McNab, H., Miller, J., Morrison, C.A., Parsons, S., Rankin, D.W.H., Smart, B.A., (1996) J. Phys. Chem., 100, p. 12280; Mitzel, N.W., Rankin, D.W.H., (2003) Dalton Trans., 3650; Aarset, K., Page, E.M., (2004) J. Phys. Chem. A, 108, p. 5474; Thomas, E.C., Laurie, V.W., (1969) J. Chem. Phys., 50, p. 3512; Beagley, B., Monaghan, J.J., (1970) Trans. Faraday Soc., 66, p. 2745; Holbling, M., Masters, L.S., Flock, M., Baum-gartner, J., Hassler, K., Robertson, H.E., Wann, D.A., (2008) Inorg. Chem., 47 (8), p. 3023; Koch, W., Holthausen, M.C., (2002) A Chemist's Guide to Density Functional Theory, 2nd ed, , Wiley-VCH: Germany
Keywords
- B3LYP/6-31G
- Basis sets
- Computational calculations
- Experimental data
- Experimental studies
- Force fields
- Fundamental bands
- Gas electron diffraction
- Infrared spectrum
- Polarizability
- Polarized Raman spectra
- Raman intensities
- Solid phasis
- Theoretical calculations
- Theoretical prediction
- Vibrational frequencies
- Density functional theory
- Electron diffraction
- Liquids
- Molecular spectroscopy
- Molecular structure
- Vibrational spectra
- Infrared spectroscopy
- organometallic compound
- trimethylgermane
- article
- chemical model
- chemical structure
- chemistry
- computer simulation
- electron
- gas
- methodology
- near infrared spectroscopy
- Raman spectrometry
- Computer Simulation
- Electrons
- Gases
- Models, Chemical
- Molecular Structure
- Organometallic Compounds
- Spectroscopy, Near-Infrared
- Spectrum Analysis, Raman