By the same authors

From the same journal

Combining spectroscopy and theory to evaluate structural models of metalloenzymes: A case study on the soluble [NiFe] hydrogenase from Ralstonia eutropha

Research output: Contribution to journalArticle

Published copy (DOI)

Author(s)

  • Marius Horch
  • Yvonne Rippers
  • Maria A. Mroginski
  • Peter Hildebrandt
  • Ingo Zebger

Department/unit(s)

Publication details

JournalChemPhysChem
DatePublished - 14 Jan 2013
Issue number1
Volume14
Number of pages7
Pages (from-to)185-191
Original languageEnglish

Abstract

Hydrogenases catalyse the reversible cleavage of molecular hydrogen into protons and electrons. While most of these enzymes are inhibited under aerobic conditions, some hydrogenases are catalytically active even at ambient oxygen levels. In particular, the soluble [NiFe] hydrogenase from Ralstonia eutropha H16 couples reversible hydrogen cycling to the redox conversion of NAD(H). Its insensitivity towards oxygen has been formerly ascribed to the putative presence of additional cyanide ligands at the active site, which has been, however, discussed controversially. Based on quantum chemical calculations of model compounds, we demonstrate that spectroscopic consequences of the proposed non-standard set of inorganic ligands are in contradiction to the underlying experimental findings. In this way, the previous model for structure and function of this soluble hydrogenase is disproved on a fundamental level, thereby highlighting the efficiency of computational methods for the evaluation of experimentally derived mechanistic proposals.

    Research areas

  • density functional calculations, hydrogenases, IR spectroscopy, model complexes, oxygen tolerance

Discover related content

Find related publications, people, projects, datasets and more using interactive charts.

View graph of relations