Comprehensive assessment of meteorological conditions and airflow connectivity during HCCT-2010

A. Tilgner, L. Schöne, P. Bräuer, D. Van Pinxteren, E. Hoffmann, G. Spindler, S. A. Styler, S. Mertes, W. Birmili, R. Otto, M. Merkel, K. Weinhold, A. Wiedensohler, H. Deneke, R. Schrödner, R. Wolke, J. Schneider, W. Haunold, A. Engel, A. WéberH. Herrmann

Research output: Contribution to journalArticlepeer-review

Abstract

This study presents a comprehensive assessment of the meteorological conditions and atmospheric flow dur- ing the Lagrangian-type “Hill Cap Cloud Thuringia 2010” experiment (HCCT-2010), which was performed in Septem- ber and October 2010 at Mt. Schmücke in the Thuringian Forest, Germany and which used observations at three measurement sites (upwind, in-cloud, and downwind) to study physical and chemical aerosol–cloud interactions. A Lagrangian-type hill cap cloud experiment requires not only suitable cloud conditions but also connected airflow condi- tions (i.e. representative air masses at the different measure- ment sites). The primary goal of the present study was to identify time periods during the 6-week duration of the ex- periment in which these conditions were fulfilled and there- fore which are suitable for use in further data examinations. The following topics were studied in detail: (i) the general synoptic weather situations, including the mesoscale flow conditions, (ii) local meteorological conditions and (iii) lo- cal flow conditions. The latter were investigated by means of statistical analyses using best-available quasi-inert trac- ers, SF6 tracer experiments in the experiment area, and re- gional modelling. This study represents the first applica- tion of comprehensive analyses using statistical measures such as the coefficient of divergence (COD) and the cross- correlation in the context of a Lagrangian-type hill cap cloud experiment. This comprehensive examination of local flow connectivity yielded a total of 14 full-cloud events (FCEs), which are defined as periods during which all connected flow and cloud criteria for a suitable Lagrangian-type ex- periment were fulfilled, and 15 non-cloud events (NCEs), which are defined as periods with connected flow but no cloud at the summit site, and which can be used as refer- ence cases. The overall evaluation of the identified FCEs provides the basis for subsequent investigations of the mea- sured chemical and physical data during HCCT-2010 (see http://www.atmos-chem-phys.net/special_issue287.html). Results obtained from the statistical flow analyses and regional-scale modelling performed in this study indicate the existence of a strong link between the three measurement sites during the FCEs and NCEs, particularly under condi- tions of constant southwesterly flow, high wind speeds and slightly stable stratification. COD analyses performed using continuous measurements of ozone and particle (49nm di- ameter size bin) concentrations at the three sites revealed, particularly for COD values
Original languageEnglish
Pages (from-to)9105-9128
Number of pages24
JournalAtmospheric Chemistry and Physics
Volume14
Issue number17
DOIs
Publication statusPublished - 2014

Bibliographical note

© Author(s) 2014.

Cite this