Conserved noncoding sequences highlight shared components of regulatory networks in dicotyledonous plants

Laura Baxter, Aleksey Jironkin, Richard Hickman, Jay Moore, Christopher Barrington, Peter Krusche, Nigel P. Dyer, Vicky Buchanan-Wollaston, Alexander Tiskin, Jim Beynon, Katherine Denby, Sascha Ott*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Conserved noncoding sequences (CNSs) in DNA are reliable pointers to regulatory elements controlling gene expression. Using a comparative genomics approach with four dicotyledonous plant species (Arabidopsis thaliana, papaya [Carica papaya], poplar [Populus trichocarpa], and grape [Vitis vinifera]), we detected hundreds of CNSs upstream of Arabidopsis genes. Distinct positioning, length, and enrichment for transcription factor binding sites suggest these CNSs play a functional role in transcriptional regulation. The enrichment of transcription factors within the set of genes associated with CNS is consistent with the hypothesis that together they form part of a conserved transcriptional network whose function is to regulate other transcription factors and control development. We identified a set of promoters where regulatory mechanisms are likely to be shared between the model organism Arabidopsis and other dicots, providing areas of focus for further research.

Original languageEnglish
Pages (from-to)3949-3965
Number of pages17
JournalThe Plant Cell
Volume24
Issue number10
DOIs
Publication statusPublished - Oct 2012

Cite this