By the same authors

From the same journal

CRIRES spectroscopy and empirical line-by-line identification of FeH molecular absorption in an M dwarf

Research output: Contribution to journalArticlepeer-review

Published copy (DOI)

Author(s)

Department/unit(s)

Publication details

JournalAstronomy & Astrophysics
DatePublished - 16 Nov 2010
Issue number3
Volume523
Number of pages14
Pages (from-to)-
Original languageEnglish

Abstract

Molecular FeH provides a large number of sharp and isolated absorption lines that can be used to measure radial velocity, rotation, or magnetic field strength with high accuracy. Our aim is to provide an FeH atlas for M-type stars in the spectral region from 986 nm to 1077 nm (Wing-Ford band). To identify these lines in CRIRES spectra of the magnetically inactive, slowly rotating, M5.5 dwarf GJ1002, we calculated model spectra for the selected spectral region with theoretical FeH line data. In general this line list agrees with the observed data, but several individual lines differ significantly in position or in line strength. After identification of as many as possible FeH lines, we corrected the line data for position and line strength to provide an accurate atlas of FeH absorption lines for use in high precision spectroscopy of low mass stars. For all lines, we used a Voigt function to obtain their positions and equivalent widths. Identification with theoretical lines was done by hand. For confirmation of the identified lines, we used statistical methods, cross-correlation techniques, and line intensities. Eventually, we were able to identify FeH lines from the (0, 0), (1, 0), (1, 1), (2, 1), (2, 2), (3, 2), and (4, 3) vibrational bands in the observed spectra and correct the positions of the lines if necessary. The deviations between theoretical and observed positions follow a normal distribution approximately around zero. In order to empirically correct the line strength, we determined T-eff, instrumental broadening (rotational broadening) and a van der Waals enhancement factor for the FeH lines in GJ1002. We also give the scaling factors for the Einstein A values to correct the line strengths. With the identified lines, we derived rotational temperatures from the line intensities for GJ1002. We conclude that FeH lines can be used for a wide variety of applications in astrophysics. With the identified lines it will be possible for example to characterize magnetically sensitive or very temperature sensitive lines, which can be used to investigate M-type stars.

    Research areas

  • molecular data, line: identification, line: profiles, stars: late-type, INFRARED SPECTRUM, MAGNETIC-FIELDS, DATA-BASE, STARS, SYSTEM, SOLAR

Discover related content

Find related publications, people, projects, datasets and more using interactive charts.

View graph of relations