Defect-correlated skyrmions and controllable generation in perpendicularly magnetized CoFeB ultrathin films

Haihong Yin, Xiangyu Zheng, Junlin Wang, Yu Zhou, Balati Kuerbanjiang, Guanqi Li, Xianyang Lu, Kaiyu Tong, Yichuan Wang, Jing Wu, Vlado Lazarov, Richard Francis Llewelyn Evans, Roy William Chantrell, Jianwang Cai, Bo Liu, Hao Meng, Yongbing Xu

Research output: Contribution to journalArticlepeer-review

Abstract

Skyrmions have attracted significant interest due to their topological spin structures and fascinating physical features. The skyrmion phase arises in materials with a Dzyaloshinskii–Moriya interaction at interfaces or in volume of non-centrosymmetric materials. Although skyrmions have been demonstrated experimentally, the general critical intrinsic relationship among fabrication, microstructures, magnetization, and the existence of skyrmions remains to be established. Here, two series of CoFeB ultrathin films with controlled atomic scale structures are employed to reveal this relationship. The amount of defects was artificially tuned by inverting the growth order, and skyrmions were shown to be preferentially formed in samples with more defects. By utilizing first-order reversal curves, the stable region and the skyrmion densities can be efficiently controlled in the return magnetization loops. These findings establish a general internal link from sample preparation to skyrmion generation and provide a general method for controlling skyrmion density.
Original languageEnglish
Article number 062402
Pages (from-to) 062402
Number of pages5
JournalApplied Physics Letters
Volume119
Issue number6
DOIs
Publication statusPublished - 10 Aug 2021

Bibliographical note

© 2021 Author(s). Published under an exclusive license by AIP Publishing.

Cite this