Abstract
This paper describes the design and construction of a magnetically coupled modular bio-inspired underwater robot named the Modular Magnetic Bio-Inspired Underwater Vehicle (MMBAUV). Designed to form a traveling wave to mimic efficient Body Caudal Fin (BCF) swimming and manoeuvring, its modularity allows for flexible system setup and offers an opportunity for redundancy and cost reduction through a common design structure. The specific feature of this design presents a novel application of a permanent synchronous magnetic coupling between neighbouring modules with a rotational degree of freedom (DoF). The actuated magnetic coupling provides a reliable and low maintenance solution to the fundamental issues of water tightness of flexible underwater structures. When encountering
extreme conditions, the magnetic coupling allows the safe decoupling of the modules increasing the survivability of the robotic system. Presented lab testing results demonstrate the function of the design and provide initial evidence of its thrust generation and manoeuvrability.
extreme conditions, the magnetic coupling allows the safe decoupling of the modules increasing the survivability of the robotic system. Presented lab testing results demonstrate the function of the design and provide initial evidence of its thrust generation and manoeuvrability.
Original language | English |
---|---|
Article number | 113968 |
Number of pages | 12 |
Journal | Ocean Engineering |
Volume | 273 |
Early online date | 23 Feb 2023 |
DOIs | |
Publication status | Published - 1 Apr 2023 |