By the same authors

From the same journal

From the same journal

Diophantine approximation on planar curves: the convergence theory

Research output: Contribution to journalArticlepeer-review

Standard

Diophantine approximation on planar curves: the convergence theory. / Velani, S.; Vaughan FRS, Robert.

In: Inventiones Mathematicae, Vol. 166, No. 1, 10.2006, p. 103-124.

Research output: Contribution to journalArticlepeer-review

Harvard

Velani, S & Vaughan FRS, R 2006, 'Diophantine approximation on planar curves: the convergence theory', Inventiones Mathematicae, vol. 166, no. 1, pp. 103-124. https://doi.org/10.1007/s00222-006-0509-9

APA

Velani, S., & Vaughan FRS, R. (2006). Diophantine approximation on planar curves: the convergence theory. Inventiones Mathematicae, 166(1), 103-124. https://doi.org/10.1007/s00222-006-0509-9

Vancouver

Velani S, Vaughan FRS R. Diophantine approximation on planar curves: the convergence theory. Inventiones Mathematicae. 2006 Oct;166(1):103-124. https://doi.org/10.1007/s00222-006-0509-9

Author

Velani, S. ; Vaughan FRS, Robert. / Diophantine approximation on planar curves: the convergence theory. In: Inventiones Mathematicae. 2006 ; Vol. 166, No. 1. pp. 103-124.

Bibtex - Download

@article{880d915294374bd183c5f5f0b630f676,
title = "Diophantine approximation on planar curves: the convergence theory",
abstract = "The convergence theory for the set of simultaneously psi-approximable points lying on a planar curve is established. Our results complement the divergence theory developed in [1] and thereby completes the general metric theory for planar curves.",
author = "S. Velani and {Vaughan FRS}, Robert",
year = "2006",
month = oct,
doi = "10.1007/s00222-006-0509-9",
language = "English",
volume = "166",
pages = "103--124",
journal = "Inventiones Mathematicae",
issn = "1432-1297",
publisher = "Springer New York",
number = "1",

}

RIS (suitable for import to EndNote) - Download

TY - JOUR

T1 - Diophantine approximation on planar curves: the convergence theory

AU - Velani, S.

AU - Vaughan FRS, Robert

PY - 2006/10

Y1 - 2006/10

N2 - The convergence theory for the set of simultaneously psi-approximable points lying on a planar curve is established. Our results complement the divergence theory developed in [1] and thereby completes the general metric theory for planar curves.

AB - The convergence theory for the set of simultaneously psi-approximable points lying on a planar curve is established. Our results complement the divergence theory developed in [1] and thereby completes the general metric theory for planar curves.

U2 - 10.1007/s00222-006-0509-9

DO - 10.1007/s00222-006-0509-9

M3 - Article

VL - 166

SP - 103

EP - 124

JO - Inventiones Mathematicae

JF - Inventiones Mathematicae

SN - 1432-1297

IS - 1

ER -