Distinct effects of attention on the neural responses to form and motion processing: a SSVEP source-imaging study

Melanie Palomares, Justin M Ales, Benoit R Cottereau, Anthony M Norcia, Alex R. Wade

Research output: Contribution to journalArticlepeer-review

Abstract

We measured neural responses to local and global aspects of form and motion stimuli using frequency-tagged, steady-state visual evoked potentials (SSVEPs) combined with magnetic resonance imaging (MRI) data. Random dot stimuli were used to portray either dynamic Glass patterns (Glass, 1969) or coherent motion displays. SSVEPs were used to estimate neural activity in a set of fMRI-defined visual areas in each subject. To compare activity associated with local versus global processing, we analyzed two frequency components of the SSVEP in each visual area: the high temporal frequency at which the local dots were updated (30 Hz) and the much lower frequency corresponding to updates in the global structure (0.83 Hz). Local and global responses were evaluated in the context of two different behavioral tasks--subjects had to either direct their attention toward or away from the global coherence of the stimuli. The data show that the effect of attention on global and local responses is both stimulus and visual area dependent. When attention was directed away from stimulus coherence, both local and global responses were higher in the coherent motion than Glass pattern condition. Directing attention to coherence in Glass patterns enhanced global activity in areas LOC, hMT+, V4, V3a, and V1, while attention to global motion modulated responses by a smaller amount in a smaller set of areas: V4, hMT+, and LOC. In contrast, directing attention towards stimulus coherence weakly increased local responses to both coherent motion and Glass patterns. These results suggest that visual attention differentially modulates the activity of early visual areas at both local and global levels of structural encoding.
Original languageEnglish
Article number15
Pages (from-to)15
JournalJournal of Vision
Volume12
Issue number10
DOIs
Publication statusPublished - 2012

Cite this