Abstract
This article reports self-assembling dendrons which bind DNA in a multivalent manner. The molecular design directly impacts on self-assembly which subsequently controls the way these multivalent nanostructures bind DNA-this can be simulated by multiscale modelling. Incorporation of an S-S linkage between the multivalent hydrophilic dendron and the hydrophobic units responsible for self-assembly allows these structures to undergo triggered reductive cleavage, with dithiothreitol (DTT) inducing controlled breakdown, enabling the release of bound DNA. As such, the high-affinity self-assembled multivalent binding is temporary. Furthermore, because the multivalent dendrons are constructed from esters, a second slow degradation step causes further breakdown of these structures. This two-step double-degradation mechanism converts a large self-assembling unit with high affinity for DNA into small units with no measurable binding affinity-demonstrating the advantage of self-assembled multivalency (SAMul) in achieving highly responsive nanoscale binding of biological targets.
Original language | English |
---|---|
Pages (from-to) | 446-455 |
Number of pages | 10 |
Journal | Organic and Biomolecular Chemistry |
Volume | 12 |
Issue number | 3 |
Early online date | 22 Nov 2013 |
DOIs | |
Publication status | Published - 21 Jan 2014 |