By the same authors

From the same journal

From the same journal

Edge localized modes in DIII-D high performance discharges

Research output: Contribution to journalArticlepeer-review


  • A D Turnbull
  • L L Lao
  • T H Osborne
  • O Sauter
  • E J Strait
  • T S Taylor
  • M S Chu
  • J R Ferron
  • C M Greenfield
  • A W Leonard
  • R L Miller
  • P B Snyder
  • H R Wilson
  • H Zohm


Publication details

JournalPlasma Physics and Controlled Fusion
DatePublished - Oct 2003
Issue number10
Number of pages28
Pages (from-to)1845-1872
Original languageEnglish


A new understanding of edge localized modes (ELMs) in tokamak discharges is emerging (Snyder P B et al 2002 Phys. Plasmas 9 2037), in which the ELM is an essentially ideal magnetohydrodynamic (MHD) instability and the ELM severity is determined by the radial width of the linearly unstable MHD kink modes. A detailed, comparative study of the penetration into the core of the respective linear instabilities in a standard DIII-D ELMing, high confinement mode (H-mode) discharge, with that for two relatively high performance discharges shows that these are also encompassed within the framework of the new model. These instabilities represent the key limiting factor in extending the high performance of these discharges. In the standard ELMing H-mode, the MHD instabilities are highly localized in the outer few per cent flux surfaces, and the ELM is benign, causing only a small temporary drop in the energy confinement. In contrast, for both a very high confinement mode and an H-mode with a broad internal transport barrier extending over the entire core and coalesced with the edge transport barrier, the linearly unstable modes penetrate well into the mid radius and the corresponding consequences for global confinement are significantly more severe. The ELM accordingly results in an irreversible loss of the high performance.

Discover related content

Find related publications, people, projects, datasets and more using interactive charts.

View graph of relations