By the same authors

From the same journal

Effect of annealing on the structure and magnetic properties of Co2FeAl0.5Si0.5 thin films on Ge(111)

Research output: Contribution to journalArticle



Publication details

DateAccepted/In press - 6 Mar 2018
DateE-pub ahead of print (current) - 7 Mar 2018
Number of pages9
Early online date7/03/18
Original languageEnglish


Abstract We present a magnetic and structural properties study of epitaxially grown B2-ordered full Heusler Co2FeSi0.5Al0.5 single crystal films on Ge(111) substrates, as a function of annealing temperature. Hysteresis loop measurements reveal that the magnetic properties of Co2FeSi0.5Al0.5 are stable up to 450 °C while ferromagnetic resonance linewidth measurements show a reduction of Gilbert damping from 5.6 × 10−3 to 2.9 × 10−3 for as-grown and annealed film, respectively. Above 500 °C, the films have increased coercivity, decreased saturation magnetisation, and show characteristic two-magnon scattering resonance line-shapes. Magnetic inhomogeneities developed within the film when annealed above 500 °C were correlated to significant interdiffusion at the film-substrate interface, as confirmed by scanning transmission electron microscopy and electron energy loss spectroscopy. By performing first-principles calculations based on atomistic models developed from atomically-resolved microscopy images, we show the magnetic moment of the Co2FeSi0.5Al0.5 film reduces upon Co substitution by Ge atoms.

Bibliographical note

© 2018 Elsevier B.V. All rights reserved. This is an author-produced version of the published paper. Uploaded in accordance with the publisher’s self-archiving policy.

Discover related content

Find related publications, people, projects, datasets and more using interactive charts.

View graph of relations