Projects per year
Abstract
Two series of bimesogens with phenyl benzoate mesogenic units were prepared: one series having a heptamethylene spacer and the other a pentamethylene spacer with two ether-linking groups. These materials were prepared to provide experimental backing to the widely held hypothesis that methylene-linked bimesogens are more likely to exhibit the twist-bend nematic mesophase than their ether-linked counterparts. Several of the methylene-linked materials exhibited nematic and NTB mesophases, whereas the analogous ether-linked materials gave only nematic phases albeit with significantly higher clearing points. Virtual N–NTB transition temperatures for both methylene- and ether-linked bimesogens were extrapolated by constructing binary phase diagrams with the well-studied twist-bend material CB9CB. Contrary to our expectations these virtual transition temperatures were in most cases higher for the ether-linked bimesogens than in the analogous methylene compounds, this runs counter to reported theories and hypotheses that the incorporation of ether-linking groups should serve to destabilise the NTB phase.
Original language | English |
---|---|
Pages (from-to) | 84-92 |
Number of pages | 9 |
Journal | LIQUID CRYSTALS |
Volume | 44 |
Issue number | 1 |
Early online date | 3 Oct 2016 |
DOIs | |
Publication status | Published - 2 Jan 2017 |
Bibliographical note
© 2016 Informa UK Limited, trading as Taylor & Francis Group. This is an author-produced version of the published paper. Uploaded in accordance with the publisher’s self-archiving policy. Further copying may not be permitted; contact the publisher for detailsKeywords
- bimesogens
- Liquid crystals
- twist-bend nematic
Projects
- 1 Finished
-
Nanoscale Engineering of Dyes for Liquid Crystal Dyes in Device Applications
Saez, I. M., Cowling, S. J., Goodby, J. W. & Moore, J. N.
1/06/15 → 30/11/18
Project: Research project (funded) › Research