Elevated carbon dioxide and warming impact silicon and phenolic-based defences differently in native and exotic grasses.

Scott N. Johnson, Susan E Hartley

Research output: Contribution to journalArticlepeer-review


Global climate change may increase invasions of exotic plant species by directly promoting the success of invasive/exotic species or by reducing the competitive abilities of native species. Changes in plant chemistry, leading to altered susceptibility to stress, could mediate these effects. Grasses are hyper-accumulators of silicon, which play a crucial function in the alleviation of diverse biotic and abiotic stresses. It is unknown how predicted increases in atmospheric carbon dioxide (CO2 ) and air temperature affect silicon accumulation in grasses, especially in relation to primary and secondary metabolites. We tested how elevated CO2 (eCO2 ) (+240 ppm) and temperature (eT) (+4°C) affected chemical composition (silicon, phenolics, carbon and nitrogen) and plant growth in eight grass species, either native or exotic to Australia. eCO2 increased phenolic concentrations by 11%, but caused silicon accumulation to decline by 12%. Moreover, declines in silicon occurred mainly in native species (-19%), but remained largely unchanged in exotic species. Conversely, eT increased silicon accumulation in native species (+19%) but decreased silicon accumulation in exotic species (-10%). Silicon and phenolic concentrations were negatively correlated with each other, potentially reflecting a defensive trade-off. Moreover, both defences were negatively correlated with plant mass, compatible with a growth-defence trade-off. Grasses responded in a species-specific manner, suggesting that the relative susceptibility of different species may differ under future climates compared to current species rankings of resource quality. For example, the native Microlaena stipoides was less well defended under eCO2 in terms of both phenolics and silicon, and thus could suffer greater vulnerability to herbivores. To our knowledge, this is the first demonstration of the impacts of eCO2 and eT on silicon accumulation in grasses. We speculate that the greater plasticity in silicon uptake shown by Australian native grasses may be partly a consequence of evolving in a low nutrient and seasonally arid environment.
Original languageEnglish
Pages (from-to)3886-3896
JournalGlobal Change Biology
Issue number9
Early online date1 Dec 2017
Publication statusPublished - 16 Aug 2018

Bibliographical note

© 2017 John Wiley & Sons, Inc. This is an author-produced version of the published paper. Uploaded in accordance with the publisher’s self-archiving policy. Further copying may not be permitted; contact the publisher for details.

Cite this