By the same authors

Emission and fate modelling framework for engineered nanoparticles in urban aquatic systems at high spatial and temporal resolution

Research output: Contribution to journalArticle

Full text download(s)

Published copy (DOI)

Author(s)

Department/unit(s)

Publication details

JournalEnvironmental Science: Nano
DateAccepted/In press - 1 Jan 2018
DatePublished (current) - 3 Jan 2018
Number of pages11
Original languageEnglish

Abstract

Trends in global urbanization and technology development have raised concerns about the associated increase in product waste emissions, including novel contaminants such as engineered nanoparticles (ENPs). The assessment of these emissions in urban systems requires modelling approaches that integrate the complexity of urban environments as well as the high spatial and temporal variability of contaminant emissions. ENPs are emitted to urban surface waters through a variety of point and diffuse sources, with these emissions being driven by weather, usage patterns and population density. While the potential environmental and health impacts of ENPs are still not fully understood, understanding the spatial and temporal distribution of ENPs at the local scale will help to inform risk assessment. In this paper, we propose a novel modelling approach for estimating the exposure of ENPs in surface waters of urban systems. An integrative modelling framework combining an emission and a fate model for ENPs with high spatial and temporal resolution is presented and strategies for data gathering and the handling of knowledge gaps are discussed. Our framework is capable of identifying local emission hot spots and predicting exposure across a city, while generating information on the final speciation of the emitted ENPs (nano form, aggregates and other transformation products) within the studied environmental compartments over time.

Bibliographical note

© The Royal Society of Chemistry 2018. This is an author-produced version of the published paper. Uploaded in accordance with the publisher’s self-archiving policy. Further copying may not be permitted; contact the publisher for details

Discover related content

Find related publications, people, projects, datasets and more using interactive charts.

View graph of relations