Projects per year
Abstract
The production of intense X-ray and particle sources is one of the most remarkable aspects of high energy laser interaction with a solid target. Wide application of these laser-driven secondary sources requires a high yield, which is partially limited by the amount of laser energy absorbed by the target. Here, we report on the enhancement of laser absorption and X-ray and particle flux by target surface modifications. In comparison to targets with flat front surfaces, our experiments show exceptional laser-to-target performance for our novel cone-shaped silicon microstructures. The structures are manufactured via laser-induced surface structuring. Spectral and spatial studies of reflectance and X-ray generation reveal significant increases of the silicon Kα line and a boost of the overall X-ray intensity, while the amount of reflected light decreases. Also, the proton and electron yields are enhanced, but both temperatures remain comparable to those of flat foil targets. We support the experimental findings with 2D particle in cell simulations to identify the mechanisms responsible for the strong enhancement. Our results demonstrate how custom surface structures can be used to engineer high power laser-plasma sources for future applications.
Original language | English |
---|---|
Article number | 043106 |
Number of pages | 7 |
Journal | Physics of Plasmas |
Volume | 27 |
Issue number | 4 |
DOIs | |
Publication status | Published - 20 Apr 2020 |
Projects
- 1 Finished
-
Plasma kinetics, pre-heat and the emergence of strong shocks in laser fusion
Woolsey, N. C. (Principal investigator)
1/07/17 → 31/12/21
Project: Research project (funded) › Research