By the same authors

From the same journal

Enhancing reliability and efficiency for real-time robust adaptive steganography using cyclic redundancy check codes

Research output: Contribution to journalArticle

Full text download(s)

Published copy (DOI)

Author(s)

Department/unit(s)

Publication details

JournalJOURNAL OF REAL-TIME IMAGE PROCESSING
DatePublished - 24 Aug 2019
Volume17
Number of pages9
Pages (from-to)115–123
Original languageEnglish

Abstract

The development of multimedia and deep learning technology bring new challenges to steganography and steganalysis techniques. Meanwhile, robust steganography, as a class of new techniques aiming to solve the problem of covert communication under lossy channels, has become a new research hotspot in the field of information hiding. To improve the communication reliability and efficiency for current real-time robust steganography methods, a concatenated code, composed of Syndrome–Trellis codes (STC) and cyclic redundancy check (CRC) codes, is proposed in this paper. The enhanced robust adaptive steganography framework proposed is this paper is characterized by a strong error detection capability, high coding efficiency, and low embedding costs. On this basis, three adaptive steganographic methods resisting JPEG compression and detection are proposed. Then, the fault tolerance of the proposed steganography methods is analyzed using the residual model of JPEG compression, thus obtaining the appropriate coding parameters. Experimental results show that the proposed methods have a significantly stronger robustness against compression, and are more difficult to be detected by statistical based steganalytic methods.

Bibliographical note

© Springer-Verlag GmbH Germany, part of Springer Nature 2019. This is an author-produced version of the published paper. Uploaded in accordance with the publisher’s self-archiving policy. Further copying may not be permitted; contact the publisher for details.

Discover related content

Find related publications, people, projects, datasets and more using interactive charts.

View graph of relations