By the same authors

From the same journal

Enhancing the thermoelectric power factor of Sr0.9Nd0.1TiO3 through control of the nanostructure and microstructure

Research output: Contribution to journalArticle

Author(s)

  • Dursun Ekren
  • Feridoon Azough
  • Ali Gholinia
  • Sarah J. Day
  • David Hernandez-Maldonado
  • Despoina M. Kepaptsoglou
  • Quentin M. Ramasse
  • Robert Freer

Department/unit(s)

Publication details

Journal Journal of Materials Chemistry A
DateAccepted/In press - 18 Nov 2018
DatePublished (current) - 23 Nov 2018
Original languageEnglish

Abstract

Donor-doped SrTiO3 ceramics are very promising n-type oxide thermoelectrics. We show that significant improvements in the thermoelectric power factor can be achieved by control of the nanostructure and microstructure. Using additions of B2O3 and ZrO2, high density, high quality Sr0.9Nd0.1TiO3 ceramics were synthesised by the mixed oxide route; samples were heat treated in a single step under reducing atmosphere at 1673 K. Synchrotron and electron diffraction studies revealed an I4/mcm tetragonal symmetry for all specimens. Microstructure development depended on the ZrO2 content; low level additions of ZrO2 (up to 0.3 wt%) led to a uniform grain size with transformation-induced sub-grain boundaries. HRTEM studies showed a high density of dislocations within the grains; the dislocations comprised (100) and (110) edge dislocations with Burger vectors of d(100) and d(110) respectively. Zr doping promoted atomic level homogenization and a uniform distribution of Nd and Sr in the lattice, inducing greatly enhanced carrier mobility. Transport property measurements showed a significant increase in the power factor, mainly resulting from the enhanced electrical conductivity while the Seebeck coefficients were unchanged. In optimised samples a power factor of 2.0 × 10−3 W m−1 K−2 was obtained at 500 K. This is an ∼30% improvement compared to the highest values reported for SrTiO3-based ceramics. The highest ZT value for Sr0.9Nd0.1TiO3 was 0.37 at 1015 K. This paper demonstrates the critical importance of controlling the structure at the atomic level and the effectiveness of minor dopants in enhancing the thermoelectric res

Bibliographical note

This is an author-produced version of the published paper. Uploaded with permission of the publisher/copyright holder. Further copying may not be permitted; contact the publisher for details

Discover related content

Find related publications, people, projects, datasets and more using interactive charts.

View graph of relations