By the same authors

From the same journal

From the same journal

Environmental impact assessment of wheat straw based alkyl polyglucosides produced using novel chemical approaches

Research output: Contribution to journalArticle

Author(s)

Department/unit(s)

Publication details

JournalGreen Chemistry
DatePublished - 18 Aug 2017
Volume19
Pages (from-to)4380-4395
Original languageEnglish

Abstract

This paper evaluates and quantifies the environmental performance of alkyl polyglucosides sourced from wheat straw (WS-APG), a low-cost and low-ecological impact agricultural residue, compared to that of their commercial counterpart, which is sourced from palm kernel oil and wheat grain (PW-APG). Escalating pressure to consider the environmental sustainability of fossil derived surfactant consumption has driven biosurfactants to become the product of choice within the surfactant market, and a class of ‘plant’ based non-ionic surfactants called alkyl polyglucosides (APG) are particularly prevalent. However, the existing food based feedstock of APG such as coconut oil, palm oil, wheat and corn (in addition to being expensive) will potentially undermine the claimed ‘sustainability’ of the APG products (i.e. the ‘food vs. chemical’ issue). Here, we present the “cradle-to-gate” life cycle impact assessment of a suggested
alternative, hybridised APG synthesis technique where the Fisher glycosidation method is supplemented by novel, green chemistry based techniques. This evaluation provides a quantitative insight into direct GHG intensity and other ecological impact indicators, including land use, waste generation and energy consumption. Upon evaluation, the wheat straw-derived pathway delivered GHG-emission savings in the range of 84–98%, compared to that of the palm kernel–wheat grain pathway. Waste generated from the production of unit mass of the product amounted to 0.43 kg and 10.73 kg per kg of WS-APG and PW-APG,
respectively. In addition to the above mentioned facts, the ‘cradle–gate’ stages of WS-APG production were also found to consume relatively lower amounts of water and fossil-derived energy. In conclusion, of the two APG production pathways, the suggested ‘hybrid’ pathway using an agricultural residue, wheat
straw, was found to be sustainable and to demonstrate better environmental performance.

Bibliographical note

© The Royal Society of Chemistry 2017

Discover related content

Find related publications, people, projects, datasets and more using interactive charts.

View graph of relations