Abstract
A general method is described that allows experimental equilibrium structures to be determined from gas electron diffraction (GED) data. Distance corrections, starting values for amplitudes of vibration and anharmonic "Morse" constants (all required for a GED refinement) have been extracted from molecular dynamics (MD) simulations. For this purpose MD methods have significant advantages over traditional force-field methods, as they can more easily be performed for large molecules, and, as they do not rely on extrapolation from equilibrium geometries, they are highly suitable for molecules with large-amplitude and anharmonic modes of vibration. For the test case Si 8O 12Me 8, where the methyl groups rotate and large deformations of the Sig 8O 12 cage are observed, the MD simulations produced results markedly superior to those obtained using forcefield methods. The experimental equilibrium structure of Si 8O 12H 8 has also been determined, demonstrating the use of empirical potentials rather than DFT methods when such potentials exist. We highlight the one major deficiency associated with classical MD-the absence of quantum effects-which causes some lightatom bonded-pair amplitudes of vibration to be significantly underestimated. However, using C 3N 3Cl 3 and C 3N 3H 3 as examples, we show that path-integral MD simulations can overcome these problems. The distance corrections and amplitudes of vibration obtained for C 3N 3Cl 3 are almost identical to those obtained from force-field methods, as we would expect for such a rigid molecule. In the case of C 3N 3H 3, for which an accurate experimental structure exists, the use of path-integral methods more than doubles the C-H amplitude of vibration. © 2009 American Chemical Society.
Original language | Undefined/Unknown |
---|---|
Pages (from-to) | 9511-9520 |
Number of pages | 10 |
Journal | Journal of Physical Chemistry A |
Volume | 113 |
Issue number | 34 |
DOIs | |
Publication status | Published - 27 Aug 2009 |
Bibliographical note
Cited By (since 1996):11Export Date: 1 October 2013
Source: Scopus
CODEN: JPCAF
doi: 10.1021/jp904185g
Language of Original Document: English
Correspondence Address: Rankin, D. W. H.; School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, United Kingdom; email: [email protected]
References: Jensen, P., (1988) J. Mol Spectrosc, 128, p. 478; Jensen, P., (1988) J. Chem. Soc., Faraday Trans. 2, 84, p. 1315; Bastiansen, O., Traetteberg, (1960) M. Acta Crystallogr, 13, p. 1108; Breed, H., Bastiansen, O., Almenningen, A., (1960) Acta Crystallogr, 13, p. 1108; Morino, Y., (1960) Acta Crystallogr, 13, p. 1107; Hedberg, L., Mills, I.M., (1993) J. Mol Spectrosc, 160, p. 117; Hedberg, L., Mills, I.M., (2000) J. Mol Spectrosc, 203, p. 82; Sipachev, V.A., (1985) THEOCHEM, 22, p. 143; Sipachev, V.A., (1999) Advances in Molecular Structure Research, 5, pp. 323-371. , Hargittai, I. H. M, Ed, JAI: Greenwich; McCaffrey, P.D., Mawhorter, R.J., Turner, A.R., Brain, P.T., Rankin, D.W.H., (2007) J. Phys. Chem. A, 111, p. 6103; Reilly, A.M., Wann, D.A., Morrison, C.A., Rankin, D.W.H., (2007) Chem. Phys. Lett, 448, p. 61; Wann, D.A., Less, R.J., Rataboul, F., McCaffrey, P.D., Reilly, A.M., Robertson, H.E., Lickiss, P.D., Rankin, D.W.H., (2008) Organometallics, 27, p. 4183; Tuckerman, M.E., (2002) Path Integration via Molecular Dynamics, 10. , John von Neumann Institute for Computing: Jülich; Parrinello, M., Rahman, A., (1984) J. Chem. Phys, 80, p. 860; Morrison, C.A., Smart, B.A., Rankin, D.W.H., Robertson, H.E., Pfeffer, M., Bodenmüller, W., Ruber, R., Typke, V., (1997) J. Phys. Chem. A, 101, p. 10029; Bandgar, B.P., Pandit, S.S., (2002) Tetrahedron Lett, 43, p. 3413; Pascal Jr., R.A., Ho, D.M., (1992) Tetrahedron Lett, 33, p. 4707; Maginn, S.J., Compton, R.G., Harding, M.S., Brennan, C.M., Docherty, R., (1993) Tetrahedron Lett, 34, p. 4349; Mitchell, J.B.O., Price, S.L., Leslie, M., Buttar, D., Roberts, R.J., (2001) J. Phys. Chem. A, 105, p. 9961; Frisch, M. J, Trucks, G. W, Schlegel, H. B, Scuseria, G. E, Robb, M. A, Cheeseman, J. R, Montgomery, J. A, Jr, Vreven, T, Kudin, K. N, Burant, J. C, Millam, J. M, Iyengar, S. S, Tomasi, J, Barone, V, Mennucci, B, Cossi, M, Scalmani, G, Rega, N, Petersson, G. A, Nakatsuji, H, Hada, M, Ehara, M, Toyota, K, Fukuda, R, Hasegawa, J, Ishida, M, Nakajima, T, Honda, Y, Kitao, O, Nakai, H, Klene, M, Li, X, Knox, J. E, Hratchian, H. P, Cross, J. B, Adamo, C, Jaramillo, J, Gomperts, R, Stratmann, R. E, Yazyev, O, Austin, A. J, Cammi, R, Pomelli, C, Ochterski, J. W, Ayala, P. Y, Morokuma, K, Voth, G. A, Salvador, P, Dannenberg, J. J, Zakrzewski, V. G, Dapprich, S, Daniels, A. D, Strain, M. C, Farkas, O, Malick, D. K, Rabuck, A. D, Raghavachari, K, Foresman, J. B, Ortiz, J. V, Cui, Q, Baboul, A. G, Clifford, S, Cioslowski, J, Stefanov, B. B, Liu, G, Liashenko, A, Piskorz, P, Komaromi, I, Martin, R. L, Fox, D. J, Keith, T, Al-Lahttp://www.nsccs.ac.uk, EPSRC National Service for Computational Chemistry Software. URLEaStCHEM Research Computing Facility (http://www.eastchem.ac.uk/rcf). This facility, , http://www.edikt.org, is partially supported by the eDIKT initiative; Binkley, J.S., Pople, J.A., Hehre, W.J., (1980) J. Am. Chem. Soc, 102, p. 939; Gordon, M.S., Binkley, J.S., Pople, J.A., Pietro, W.J., Hehre, W.J., (1982) J. Am. Chem. Soc, 104, p. 2797; Pietro, W.J., Franci, M.M., Hehre, W.J., DeFrees, D.J., Pople, J.A., Binkley, J.S., (1982) J. Am. Chem. Soc, 104, p. 5039; Hehre, W.J., Ditchfield, R., Pople, J.A., (1972) J. Chem. Phys, 56, p. 2257; Hariharan, P.C., Pople, J.A., (1973) Theor. Chim. Acta, 28, p. 213; Gordon, M.S., (1980) Chem. Phys. Lett, 76, p. 163; Krishnan, R., Binkley, J.S., Seeger, R., Pople, J.A., (1980) J. Chem. Phys, 72, p. 650; McLean, A.D., Chandler, G.S., (1980) J. Chem. Phys, 72, p. 5639; Møller, C., Plesset, M.S., (1934) Phys. Rev, 46, p. 618; Becke, A.D., (1993) J. Chem. Phys, 98, p. 5648; Lee, C., Yang, W., Parr, R.G., (1988) Phys. Rev. B, 37, p. 785; CPMD, Copyright IBM Corp 1990-2006, Copyright MPI für Festkörperforschung Stuttgart 1997-2001http://www.epcc.ed.ac.uk, Edinburgh Parallel Computing Centre. URLMartyna, G.J., Tuckerman, M.E., (1999) J. Chem. Phys, 110, p. 2810; Perdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett, 77, p. 3865; Troullier, N., Martins, J.L., (1993) Phys. Rev. B: Condens. Matter Mater. Phys, 1991, p. 43; Tobias, D.J., Martyna, G.J., Klein, M.L., (1993) J. Phys. Chem, 97, p. 12959; Nosé, S., (1984) J. Chem. Phys, 81, p. 511; Hoover, W.G., (1985) Phys. Rev. A, 31, p. 1695; Smith, W., (2006) Mol. Simul, 32, p. 933; Smith, W., Yong, C.W., Rodger, P.M., (2002) Mol Simul, 28, p. 385; Ionescu, T.C., Qi, F., McCabe, C., Striolo, A., Kieffer, J., Cummings, P.T., (2006) J. Phys. Chem. B, 110, p. 2502; Allen, M.P., Tildesley, D.J., (1987) Computer Simulation of Liquids, , Clarendon Press: Oxford, U.K; Harris, F.J., (1978) Proc IEEE, 66, p. 51; Hargittai, I., (1988) A Survey: The Gas-Phase Electron Diffraction Technique of Molecular Structure Determination in Stereochemical Applications of Gas-Phase Electron Diffraction, Part A, , Hargittai, I, Hargittai, M, Eds, VCH Publishers: Weinheim, Germany; Zakharov, A.V., Vogt, N., Shlykov, S.A., Giricheva, N.I., Galanin, I.E., Girichev, G.V., Vogt, J., (2004) J. Mol. Struct, 707, p. 147; Huntley, C.M., Laurenson, G.S., Rankin, D.W.H., (1980) J. Chem. Soc, Dalton Trans, p. 954; Fleischer, H., Wann, D.A., Hinchley, S.L., Borisenko, K.B., Lewis, J.R., Mawhorter, R.J., Robertson, H.E., Rankin, D.W.H., (2005) Dalton Trans, p. 3221; Hinchley, S.L., Robertson, H.E., Borisenko, K.B., Turner, A.R., Johnston, B.F., Rankin, D.W.H., Ahmadian, M., Cowley, A.H., (2004) Dalton Trans, p. 2469; Ross, A.W., Fink, M., Hilderbrandt, R., (1992) International Tables for Crystallography, 100, p. 245. , Wilson, A. J. C, Ed, Kluwer Academic Publishers: Dordrecht, The Netherlands; Marcolli, C., Laine, P., Bühler, R., Calzaferri, G., Tomkinson, J., (1997) J. Phys. Chem. B, 101, p. 1171; Tangney, P., Scandolo, S., (2002) J. Chem. Phys, 116, p. 14; McCaffrey, P.D., Dewhurst, J.K., Rankin, D.W.H., Mawhorter, R.J., Sharma, S., (2008) J. Chem. Phys, 128, p. 204304; Kuchitsu, K., Nakata, M., Yamamoto, S., (1988) Joint Use of Electron Diffraction and High-Resolution Spectroscopy in Stereochemical Applications of Gas-Phase Electron Diffraction, Part A, , Hargittai, I, Hargittai, M, Eds, VCH Publishers: Weinheim, Germany; Huber, K.P., Herzberg, G., (1979) Molecular Spectra and Molecular Structure, Part IV, , Van Nostrand Reinhold: New York; Törnroos, K.W., (1994) Acta Crystallogr. C, 50, p. 1646; Auf der Heyde, T.P.E., Bürgi, H.-B., Bürgy, H., Törnroos, K.W., (1991) Chimia, 45, p. 38; VandeVondele, J., Krack, M., Mohamed, F., Parrinello, M., Chassaing, T., Hutter, J., (2005) Comput. Phys. Commun, 167, p. 103; Allinger, N.L., Chen, K., (1996) J. Comput. Chem, 17, p. 642; Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, M.J., Ferguson, D.M., Spellmeyer, D.C., Kollman, P.A., (1995) J. Am. Chem. Soc, 117, p. 5179
Keywords
- Anharmonic
- Anharmonic modes
- DFT method
- Empirical potentials
- Equilibrium geometries
- Equilibrium structures
- Field methods
- Gas electron diffraction
- General method
- Large deformations
- MD simulation
- Methyl group
- Molecular dynamics simulations
- Path integral method
- Path-integral
- Quantum effects
- Rigid molecules
- Starting values
- Test case
- Vibrational corrections
- Approximation theory
- Hydrocarbons
- Molecular dynamics
- Molecular vibrations
- Molecules
- Quantum electronics
- Electron diffraction