Experimental Test of Sequential Weak Measurements for Certified Quantum Randomness Extraction

Giulio Foletto, Matteo Padovan, Marco Avesani, Hamid Tebyanian, Paolo Villoresi, Giuseppe Vallone

Research output: Contribution to journalArticlepeer-review

Abstract

Quantum nonlocality offers a secure way to produce random numbers: their unpredictability is intrinsic and can be certified just by observing the statistic of the measurement outcomes, without assumptions on how they are produced. To do this, entangled pairs are generated and measured to violate a Bell inequality with the outcome statistics. However, after a projective quantum measurement, entanglement is entirely destroyed and cannot be used again. This fact poses an upper bound to the number of random numbers that can be produced from each quantum state when projective measurements are employed. Instead, by using weak measurements, some entanglement can be maintained and reutilized, and a sequence of weak measurements can extract an unbounded amount of randomness from a single state as predicted in Phys. Rev. A 95, 020102(R) (2017). We study the feasibility of these weak measurements, analyze the robustness to imperfections in the quantum state they are applied to, and then test them using an optical setup based on polarization-entangled photon pairs. We show that the weak measurements are realizable, but can improve the performance of randomness generation only in close-to-ideal conditions.
Original languageEnglish
Article number06206
JournalPhysical Review A
Volume103
DOIs
Publication statusPublished - 2 Jun 2021

Bibliographical note

©2021 American Physical Society. This is an author-produced version of the published paper. Uploaded in accordance with the publisher’s self-archiving policy. Further copying may not be permitted; contact the publisher for details.
9 pages, 6 figures

Keywords

  • quant-ph

Cite this