TY - JOUR
T1 - Extrapolation of Survival Data Using a Bayesian Approach
T2 - A Case Study Leveraging External Data from Cilta-Cel Therapy in Multiple Myeloma
AU - Palmer, Stephen
AU - Lin, Yi
AU - Martin, Thomas G.
AU - Jagannath, Sundar
AU - Jakubowiak, Andrzej
AU - Usmani, Saad Z.
AU - Buyukkaramikli, Nasuh
AU - Phelps, Hilary
AU - Slowik, Rafal
AU - Pan, Feng
AU - Valluri, Satish
AU - Pacaud, Lida
AU - Jackson, Graham
N1 - Publisher Copyright:
© 2023, The Author(s).
PY - 2023/9/1
Y1 - 2023/9/1
N2 - Introduction: Extrapolating long-term overall survival (OS) from shorter-term clinical trial data is key to health technology assessment in oncology. However, extrapolation using conventional methods is often subject to uncertainty. Using ciltacabtagene autoleucel (cilta-cel), a chimeric antigen receptor T-cell therapy for multiple myeloma, we used a flexible Bayesian approach to demonstrate use of external longer-term data to reduce the uncertainty in long-term extrapolation. Methods: The pivotal CARTITUDE-1 trial (NCT03548207) provided the primary efficacy data for cilta-cel, including a 12-month median follow-up snapshot of OS. Longer-term (48-month median follow-up) survival data from the phase I LEGEND-2 study (NCT03090659) were also available. Twelve-month CARTITUDE-1 OS data were extrapolated in two ways: (1) conventional survival models with standard parametric distributions (uninformed), and (2) Bayesian survival models whose shape prior was informed from 48-month LEGEND-2 data. For validation, extrapolations from 12-month CARTITUDE-1 data were compared with observed 28-month CARTITUDE-1 data. Results: Extrapolations of the 12-month CARTITUDE-1 data using conventional uninformed parametric models were highly variable. Using informative priors from the 48-month LEGEND-2 dataset, the ranges of projected OS at different timepoints were consistently narrower. Area differences between the extrapolation curves and the 28-month CARTITUDE-1 data were generally lower in informed Bayesian models, except for the uninformed log-normal model, which had the lowest difference. Conclusions: Informed Bayesian survival models reduced variation of long-term projections and provided similar projections as the uninformed log-normal model. Bayesian models generated a narrower and more plausible range of OS projections from 12-month data that aligned with observed 28-month data. Trial Registration: CARTITUDE-1 ClinicalTrials.gov identifier, NCT03548207. LEGEND-2 ClinicalTrials.gov identifier, NCT03090659, registered retrospectively on 27 March 2017, and ChiCTR-ONH-17012285.
AB - Introduction: Extrapolating long-term overall survival (OS) from shorter-term clinical trial data is key to health technology assessment in oncology. However, extrapolation using conventional methods is often subject to uncertainty. Using ciltacabtagene autoleucel (cilta-cel), a chimeric antigen receptor T-cell therapy for multiple myeloma, we used a flexible Bayesian approach to demonstrate use of external longer-term data to reduce the uncertainty in long-term extrapolation. Methods: The pivotal CARTITUDE-1 trial (NCT03548207) provided the primary efficacy data for cilta-cel, including a 12-month median follow-up snapshot of OS. Longer-term (48-month median follow-up) survival data from the phase I LEGEND-2 study (NCT03090659) were also available. Twelve-month CARTITUDE-1 OS data were extrapolated in two ways: (1) conventional survival models with standard parametric distributions (uninformed), and (2) Bayesian survival models whose shape prior was informed from 48-month LEGEND-2 data. For validation, extrapolations from 12-month CARTITUDE-1 data were compared with observed 28-month CARTITUDE-1 data. Results: Extrapolations of the 12-month CARTITUDE-1 data using conventional uninformed parametric models were highly variable. Using informative priors from the 48-month LEGEND-2 dataset, the ranges of projected OS at different timepoints were consistently narrower. Area differences between the extrapolation curves and the 28-month CARTITUDE-1 data were generally lower in informed Bayesian models, except for the uninformed log-normal model, which had the lowest difference. Conclusions: Informed Bayesian survival models reduced variation of long-term projections and provided similar projections as the uninformed log-normal model. Bayesian models generated a narrower and more plausible range of OS projections from 12-month data that aligned with observed 28-month data. Trial Registration: CARTITUDE-1 ClinicalTrials.gov identifier, NCT03548207. LEGEND-2 ClinicalTrials.gov identifier, NCT03090659, registered retrospectively on 27 March 2017, and ChiCTR-ONH-17012285.
KW - Ciltacabtagene autoleucel
KW - Extrapolation
KW - Overall survival
KW - Relapsed/refractory multiple myeloma
UR - http://www.scopus.com/inward/record.url?scp=85160837367&partnerID=8YFLogxK
U2 - 10.1007/s40487-023-00230-x
DO - 10.1007/s40487-023-00230-x
M3 - Article
AN - SCOPUS:85160837367
SN - 2366-1070
VL - 11
SP - 313
EP - 326
JO - Oncology and Therapy
JF - Oncology and Therapy
IS - 3
ER -