Fine-tuning the efficiency of para-hydrogen-induced hyperpolarization by rational N-heterocyclic carbene design

Peter John Rayner, Philip Norcott, Kate Mary Appleby, Wissam Iali, Richard Owain John, Sam J. Hart, Adrian C. Whitwood, Simon Duckett

Research output: Contribution to journalArticlepeer-review


Iridium N-heterocyclic carbene (NHC) complexes catalyze the para-hydrogen-induced hyperpolarization process, Signal Amplification by Reversible Exchange (SABRE). This process transfers the latent magnetism of para-hydrogen into a substrate, without changing its chemical identity, to dramatically improve its nuclear magnetic resonance (NMR) detectability. By synthesizing and examining over 30 novel NHC containing complexes, here we rationalize the key characteristics of efficient SABRE catalysis prior to using appropriate catalyst-substrate combinations to quantify the substrate’s NMR detectability. These optimizations deliver polarizations of 63% for 1H nuclei in methyl 4,6-d2-nicotinate, 25% for 13C nuclei in a 13C2-diphenylpyridazine and 43% for the 15N nucleus of pyridine-15N. These high detectability levels compare favorably with the 0.0005% 1H value harnessed by a routine 1.5 T clinical MRI system. As signal strength scales with the square of the number of observations, these low cost innovations which are achieved in just a few seconds reflectoffer remarkable improvements in detectability threshold that offer routes to significantly reduce measurement time.
Original languageEnglish
Article number4251
Number of pages11
JournalNature Communications
Issue number1
Publication statusPublished - 12 Oct 2018

Bibliographical note

© The Author(s) 2018

Cite this