Abstract
We evaluate the actions of other individuals based upon a variety of movements that reveal critical information to guide decision making and behavioural responses. These signals convey a range of information about the actor, including their goals, intentions and internal mental states. Although progress has been made to identify cortical regions involved in action processing, the organising principles underlying our representation of actions still remains unclear. In this paper we investigated the conceptual space that underlies action perception by assessing which qualities are fundamental to the perception of human actions. We recorded 240 different actions using motion-capture and used these data to animate a volumetric avatar that performed the different actions. 230 participants then viewed these actions and rated the extent to which each action demonstrated 23 different action characteristics (e.g., avoiding-approaching, pulling-pushing, weak-powerful). We analysed these data using Exploratory Factor Analysis to examine the latent factors underlying visual action perception. The best fitting model was a four-dimensional model with oblique rotation. We named the factors: friendly-unfriendly, formidable-feeble, planned-unplanned, and abduction-adduction. The first two factors of friendliness and formidableness explained approximately 22% of the variance each, compared to planned and abduction, which explained approximately 7–8% of the variance each; as such we interpret this representation of action space as having 2 + 2 dimensions. A closer examination of the first two factors suggests a similarity to the principal factors underlying our evaluation of facial traits and emotions, whilst the last two factors of planning and abduction appear unique to actions.
Original language | English |
---|---|
Number of pages | 23 |
Journal | Attention, Perception & Psychophysics |
Early online date | 15 May 2023 |
DOIs | |
Publication status | E-pub ahead of print - 15 May 2023 |
Bibliographical note
© The Author(s) 2023Keywords
- Perception
- Action
- Representation
- Statistical modeling
- Conceptual space
- human action recognition
- Human motion recognition
- visual recognition