Gas-phase structure, rotational barrier and vibrational properties of trimethylsilyl trifluoroacetate CF3C(O)OSi(CH3) 3: An experimental and computational study

M.E. Defonsi Lestard, M.E. Tuttolomondo, E.L. Varetti, D.A. Wann, H.E. Robertson, D.W.H. Rankin, A. Ben Altabef

Research output: Contribution to journalArticlepeer-review


The molecular structure of trimethylsilyl trifluoroacetate, CF 3C(O)OSi(CH3)3, has been determined in the gas phase from electron-diffraction data supplemented by ab initio (MP2) and DFT calculations using 6-31G(d), 6-311G(d,p), 6-311++G(d,p) and 6-311++G(3df,3pd) basis sets. Experimental data indicate that only one conformer, with C s symmetry [dihedral angle φ(CCOSi) = 180°, and all groups staggered], is observed in the gas phase. Theoretical data indicate that both this anti conformer and a gauche conformer, created by rotating about the C(O)O bond, are possible, although the preferred conformation is the staggered anti one. The torsional energies for different values of the CCOSi and COSiC dihedral angles have been calculated using the RHF, MP2 and B3LYP methods with the 6-311++G(d,p) basis set. For rotation around the CCOSi bond, a sixfold decomposition of the rotational barrier has been performed in terms of a Fourier-type expansion, enabling us to analyze the nature of the potential function, showing that the coefficients related to electrostatic interactions and steric effects are the dominant terms. The preference for the anti conformation was studied using the total-energy scheme, comparison of dipole moments, and the natural bond orbital partition scheme. The infrared spectra for the liquid and gas phases and the Raman spectrum for the liquid phase have also been recorded and the observed bands assigned to the vibrational normal modes. The experimental vibrational data, along with calculated theoretical force constants, were used to define a scaled quantum mechanical force field for the target system that enabled us to estimate the measured frequencies with a final root-mean-square deviation of 9.7 cm-1. © 2010 Elsevier B.V. All rights reserved.
Original languageUndefined/Unknown
Pages (from-to)114-123
Number of pages10
Issue number1-3
Publication statusPublished - 20 Aug 2010

Bibliographical note

Cited By (since 1996):1

Export Date: 1 October 2013

Source: Scopus


doi: 10.1016/j.molstruc.2010.02.046

Language of Original Document: English

Correspondence Address: Ben Altabef, A.; INQUINOA, CONICET, Universidad Nacional de Tucumán, San Lorenzo 456, T4000CAN Tucumán, Argentina; email:

References: Demuth, M., Mikhail, G., George, M.V., (1981) Helv. Chim. Acta, 64, p. 2759; Fujii, N., Otaka, A., Ikemura, O., Hatano, M., Okamachi, A., Funakoshi, S., Sakurai, M., Yajima, H., (1987) Chem. Pharm. Bull. (Tokyo), 35, p. 3447; Werstiuk, N.H., Brook, M.A., Hülser, P., (1988) Can. J. Chem., 66, p. 1430; Mori, S., Okada, F., Sekiguchi, O., Fijishige, M., Koitabashi, R., Tajima, S., (1997) J. Organomet. Chem., 527, p. 277; Defonsi Lestard, M.E., Tuttolomondo, M.E., Varetti, E.L., Wann, D.A., Robertson, H.E., Rankin, D.W.H., Ben Altabef, A., (2009) J. Mol. Struct., 917, p. 183; Defonsi Lestard, M.E., Tuttolomondo, M.E., Varetti, E.L., Wann, D.A., Robertson, H.E., Rankin, D.W.H., Ben Altabef, A., (2009) J. Raman Spectrosc., , 10.1002/jrs.2371; Defonsi Lestard, M.E., Tuttolomondo, M.E., Wann, D.A., Robertson, H.E., Rankin, D.W.H., Ben Altabef, A., (2010) J. Raman Spectrosc.; Defonsi Lestard, M.E., Tuttolomondo, M.E., Wann, D.A., Robertson, H.E., Rankin, D.W.H., Ben Altabef, A., (2009) J. Chem. Phys., 131, pp. 214303-214301; Huntley, C.M., Laurenson, G.S., Rankin, D.W.H., (1980) J. Chem. Soc. Dalton Trans., p. 954; Fleischer, H., Wann, D.A., Hinchley, S.L., Borisenko, K.B., Lewis, J.R., Mawhorter, R.J., Robertson, H.E., Rankin, D.W.H., (2005) Dalton Trans., p. 3221; Hinchley, S.L., Robertson, H.E., Borisenko, K.B., Turner, A.R., Johnston, B.F., Rankin, D.W.H., Ahmadian, M., Cowley, A.H., (2004) Dalton Trans., p. 2469; Ross, W., Fink, M., Hilderbrandt, R., (1992) International Tables for Crystallography, Vol. C, p. 245; National Service for Computational Chemistry Software (NSCCS), ,; Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery Jr., J.A., Pople, J.A., (2004) Gaussian 03, Revision D.01, , Gaussian, Inc. Wallingford, CT; Møller, C., Plesset, M.S., (1934) Phys. Rev., 46, p. 618; Krishnan, R., Binkley, J.S., Seeger, R., Pople, J.A., (1980) J. Chem. Phys., 72, p. 650; McLean, A.D., Chandler, G.S., (1980) J. Chem. Phys., 72, p. 5639; Frisch, M.J., Pople, J.A., Binkley, J.S., (1984) J. Chem. Phys., 80, p. 3265; Hehre, W.J., Schleyer V. P, R., Pople, J.A., (1986) Ab Initio Molecular Orbital Theory, , Wiley New York; Becke, A.D., (1993) J. Chem. Phys., 98, p. 5648; Lee, C., Yang, W., Parr, R.G., (1988) Phys. Rev. B, 37, p. 785; Sipachev, V.A., (1985) J. Mol. Struct. (THEOCHEM), 121, p. 143; Sipachev, V.A., (2001) J. Mol. Struct., 567, p. 67; Glendening, E.D., Badenhoop, J.K., Reed, A.D., Carpenter, J.E., Weinhold, F.F., (1996) Theoretical Chemistry Institute, , University of Wisconsin, Madison, WI; Collier, W.B., (1992) Program FCARTP (QCPE #631), , Department of Chemistry, Oral Roberts University Tulsa, OK; Nielsen, B., Holder, A.J., (1997) GaussView, User's Reference, , Gaussian, Inc. Pittsburgh, PA; Pitzer, R.M., Lipscomb, W.N., (1963) J. Chem. Phys., 39, p. 1995; Radom, L., Pople, J.A., (1970) J. Am. Chem. Soc., 92, p. 4786; Radom, L., Hehre, W.J., Pople, J.A., (1972) J. Am. Chem. Soc., 94, p. 2371; Douglas, D., Schleyer V. P, R., (1990) J. Org. Chem., 55, p. 1003; Millefiori, S., Alparone, A., (1998) J. Chem. Soc. Faraday Trans., 94, p. 25; Reed, A.D., Weinstock, R.B., Weinhold, F., (1985) J. Chem. Phys., 83, p. 735; Blake, A.J., Brain, P.T., McNab, H., Miller, J., Morrison, C.A., Parsons, S., Rankin, D.W.H., Smart, B.A., (1996) J. Phys. Chem., 100, p. 12280; Brain, P.T., Morrison, C.A., Parsons, S., Rankin, D.W.H., (1996) J. Chem. Soc. Dalton Trans., p. 4589; Mitzel, N.W., Rankin, D.W.H., (2003) Dalton Trans., p. 3650; Robiette, A.G., Thompson, J.C., (1965) Spectrochim. Acta, 21, p. 2023; Fernández, L.E., Ben Altabef, A., Navarro, A., Gómez, M.F., Varetti, E.L., (2000) Spectrochim. Acta A, 56, p. 1101; Fernández, L.E., Ben Altabef, A., Varetti, E.L., (2000) J. Mol. Struct., 553, p. 255; Fogarasi, G., Zhou, X., Taylor, P.W., Pulay, P., (1992) J. Am. Chem. Soc., 114, p. 8191; Pulay, P., Fogarasi, G., Pongor, G., Boggs, J.E., Vargha, A., (1983) J. Am. Chem. Soc., 105, p. 7037


  • Ab initio
  • DFT
  • GED
  • NBO
  • Anti conformers
  • Anti-conformations
  • B3LYP method
  • Basis sets
  • Computational studies
  • DFT calculation
  • Dihedral angles
  • Electron diffraction data
  • Electrostatic interactions
  • Energy schemes
  • Experimental data
  • Force constants
  • Fourier
  • Gas-phase structures
  • Gasphase
  • Gauche conformer
  • Infrared spectrum
  • Liquid and gas phasis
  • Liquid Phase
  • Natural bond orbital
  • Partition schemes
  • Potential function
  • Raman Spectrum
  • Root-mean square deviation
  • Rotational barriers
  • Scaled quantum mechanical force fields
  • Steric effect
  • Target systems
  • Torsional energies
  • Trifluoroacetates
  • Trimethylsilyl
  • Vibrational normal modes
  • Vibrational properties
  • Conformations
  • Liquids
  • Quantum theory
  • Raman spectroscopy
  • Rotation
  • Gases

Cite this