TY - JOUR
T1 - Generally covariant dynamical reduction models and the Hadamard condition
AU - Juárez-Aubry, Benito Alberto
AU - Kay, Bernard S.
AU - Sudarsky, Daniel
N1 - © 2018 American Physical Society
PY - 2018/1/17
Y1 - 2018/1/17
N2 - We recall and review earlier work on dynamical reduction models, both non-relativistic and relativistic, and discuss how they may relate to suggestions which have been made (including the matter-gravity entanglement hypothesis of one of us) for how quantum gravity could be connected to the resolution of the quantum-mechanical measurement problem. We then provide general guidelines for generalizing dynamical reduction models to curved spacetimes and propose a class of generally covariant relativistic versions of the GRW model. We anticipate that the collapse operators of our class of models may play a r\^ole in a yet-to-be-formulated theory of semiclassical gravity with collapses. We show explicitly that the collapse operators map a dense domain of states that are initially Hadamard to final Hadamard states -- a property that we expect will be needed for the construction of such a semiclassical theory. Finally, we provide a simple example in which we explicitly compute the violations in energy-momentum due to the state reduction process and conclude that this violation is of the order of a parameter of the model -- supposed to be small. We briefly discuss how this work may, upon further development of a suitable semiclassical gravity theory with collapses, enable further progress to be made on earlier work one of us and collaborators on the explanation of structure-formation in a homogeneous and isotropic quantum universe and on a possible resolution of the black hole information loss puzzle.
AB - We recall and review earlier work on dynamical reduction models, both non-relativistic and relativistic, and discuss how they may relate to suggestions which have been made (including the matter-gravity entanglement hypothesis of one of us) for how quantum gravity could be connected to the resolution of the quantum-mechanical measurement problem. We then provide general guidelines for generalizing dynamical reduction models to curved spacetimes and propose a class of generally covariant relativistic versions of the GRW model. We anticipate that the collapse operators of our class of models may play a r\^ole in a yet-to-be-formulated theory of semiclassical gravity with collapses. We show explicitly that the collapse operators map a dense domain of states that are initially Hadamard to final Hadamard states -- a property that we expect will be needed for the construction of such a semiclassical theory. Finally, we provide a simple example in which we explicitly compute the violations in energy-momentum due to the state reduction process and conclude that this violation is of the order of a parameter of the model -- supposed to be small. We briefly discuss how this work may, upon further development of a suitable semiclassical gravity theory with collapses, enable further progress to be made on earlier work one of us and collaborators on the explanation of structure-formation in a homogeneous and isotropic quantum universe and on a possible resolution of the black hole information loss puzzle.
UR - https://arxiv.org/abs/1708.09371
UR - http://www.scopus.com/inward/record.url?scp=85042101464&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.97.025010
DO - 10.1103/PhysRevD.97.025010
M3 - Article
SN - 2470-0010
VL - 97
SP - 1
EP - 19
JO - Physical Review D
JF - Physical Review D
IS - 2
M1 - 025010
ER -