By the same authors

From the same journal

Genetic modification of western wheatgrass (Pascopyrum smithii) for the phytoremediation of RDX and TNT

Research output: Contribution to journalArticle

Published copy (DOI)

Author(s)

Department/unit(s)

Publication details

JournalPlanta
DateAccepted/In press - 15 Nov 2018
DateE-pub ahead of print - 28 Nov 2018
DatePublished (current) - 11 Apr 2019
Issue number4
Volume249
Number of pages9
Pages (from-to)1007-1015
Early online date28/11/18
Original languageEnglish

Abstract

Main conclusion: Transgenic western wheatgrass degrades the explosive RDX and detoxifies TNT. Contamination, from the explosives, hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX), and 2, 4, 6-trinitrotoluene (TNT), especially on live-fire training ranges, threatens environmental and human health. Phytoremediation is an approach that could be used to clean-up explosive pollution, but it is hindered by inherently low in planta RDX degradation rates, and the high phytotoxicity of TNT. The bacterial genes, xplA and xplB, confer the ability to degrade RDX in plants, and a bacterial nitroreductase gene nfsI enhances the capacity of plants to withstand and detoxify TNT. While the previous studies have used model plant species to demonstrate the efficacy of this technology, trials using plant species able to thrive in the challenging environments found on military training ranges are now urgently needed. Perennial western wheatgrass (Pascopyrum smithii) is a United States native species that is broadly distributed across North America, well-suited for phytoremediation, and used by the US military to re-vegetate military ranges. Here, we present the first report of the genetic transformation of western wheatgrass. Plant lines transformed with xplA, xplB, and nfsI removed significantly more RDX from hydroponic solutions and retained much lower, or undetectable, levels of RDX in their leaf tissues when compared to wild-type plants. Furthermore, these plants were also more resistant to TNT toxicity, and detoxified more TNT than wild-type plants. This is the first study to engineer a field-applicable grass species capable of both RDX degradation and TNT detoxification. Together, these findings present a promising biotechnological approach to sustainably contain, remove RDX and TNT from training range soil and prevent groundwater contamination.

Bibliographical note

© Springer-Verlag GmbH Germany, part of Springer Nature 2018. This is an author-produced version of the published paper. Uploaded with permission of the publisher/copyright holder. Further copying may not be permitted; contact the publisher for details

    Research areas

  • Monocot promoters, Phytoremediation, RDX, Stacked genes, TNT, Transformation, Western wheatgrass

Discover related content

Find related publications, people, projects, datasets and more using interactive charts.

View graph of relations