Growth and symbiotic effectiveness of an arbuscular mycorrhizal fungus in organic matter in competition with soil bacteria

Research output: Contribution to journalArticlepeer-review

Abstract

Arbuscular mycorrhizal (AM) fungi can enhance the rate of decomposition of organic material, and can acquire nitrogen (N) from organic sources, although they are not saprotrophs. These fungi may instead indirectly influence decomposition through interactions with other soil microorganisms. We investigated the impact of both AM hyphae and a bacterial filtrate on N capture by a host plant from sterilized organic material (Lolium perenne shoots dual labelled with 15N and 13C), using compartmented microcosms. The addition of a bacterial filtrate considerably suppressed AM hyphal growth in the patch and reduced the root phosphorus content, demonstrating that bacterial populations can reduce symbiotic effectiveness. In contrast, AM hyphae had only a limited impact on bacterial community structure. Uptake of 15N greatly exceeded that of 13C, demonstrating that fungi acquired N in an inorganic form. We also examined the ability of AM fungi in gnotobiotic hairy root culture to acquire N directly from organic materials of varying complexities (glutamic acid, urea, bacterial lysate and L. perenne shoots). AM colonization did not enhance root N capture from these materials, although the bacterial lysate reduced both total AM colonization and arbuscule frequency. Collectively, these data demonstrate antagonistic interactions between AM fungi and bacteria that reflect resource competition for decomposition products.

Original languageEnglish
Pages (from-to)428-438
Number of pages11
JournalFEMS MICROBIOLOGY ECOLOGY
Volume76
Issue number3
DOIs
Publication statusPublished - Jun 2011

Keywords

  • mycorrhizal symbiosis
  • 13C
  • 15N
  • organic nitrogen
  • microorganisms
  • GLOMUS-INTRARADICES
  • LOLIUM-PERENNE
  • BROMODEOXYURIDINE IMMUNOCAPTURE
  • COMMUNITY COMPOSITION
  • PLANTAGO-LANCEOLATA
  • SPATIAL-DISPERSION
  • EXTERNAL HYPHAE
  • CARBON FLOW
  • RHIZOSPHERE
  • NITROGEN

Cite this