Guiding of relativistic electron beams in dense matter by laser-driven magnetostatic fields

M. Bailly-Grandvaux, J. J. Santos*, C. Bellei, P. Forestier-Colleoni, S. Fujioka, L. Giuffrida, J. J. Honrubia, D. Batani, R. Bouillaud, M. Chevrot, Joseph E. Cross, R. Crowston, S. Dorard, Jean-Luc Dubois-Randé, M. Ehret, G. Gregori, S. Hulin, S. Kojima, E. Loyez, J. R. MarquèsA. Morace, Ph Nicolaï, M. Roth, S. Sakata, G. Schaumann, F. Serres, J. Servel, V. T. Tikhonchuk, N. Woolsey, Z. Zhang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Intense lasers interacting with dense targets accelerate relativistic electron beams, whichtransport part of the laser energy into the target depth. However, the overall laser-to-targetenergy coupling efficiency is impaired by the large divergence of the electron beam, intrinsicto the laser-plasma interaction. Here we demonstrate that an efficient guiding ofMeV electrons with about 30MA current in solid matter is obtained by imposing a laserdrivenlongitudinal magnetostatic field of 600 T. In the magnetized conditions the transportedenergy density and the peak background electron temperature at the 60-μm-thicktarget's rear surface rise by about a factor of five, as unfolded from benchmarked simulations.Such an improvement of energy-density flux through dense matter paves the ground foradvances in laser-driven intense sources of energetic particles and radiation, driving matter toextreme temperatures, reaching states relevant for planetary or stellar science as yet inaccessibleat the laboratory scale and achieving high-gain laser-driven thermonuclear fusion.

Original languageEnglish
Article number102
Number of pages8
JournalNature Communications
Volume9
Issue number1
DOIs
Publication statusPublished - 9 Jan 2018

Bibliographical note

© The Author(s) 2017

Cite this