TY - JOUR
T1 - Guiding of relativistic electron beams in dense matter by laser-driven magnetostatic fields
AU - Bailly-Grandvaux, M.
AU - Santos, J. J.
AU - Bellei, C.
AU - Forestier-Colleoni, P.
AU - Fujioka, S.
AU - Giuffrida, L.
AU - Honrubia, J. J.
AU - Batani, D.
AU - Bouillaud, R.
AU - Chevrot, M.
AU - Cross, Joseph E.
AU - Crowston, R.
AU - Dorard, S.
AU - Dubois-Randé, Jean-Luc
AU - Ehret, M.
AU - Gregori, G.
AU - Hulin, S.
AU - Kojima, S.
AU - Loyez, E.
AU - Marquès, J. R.
AU - Morace, A.
AU - Nicolaï, Ph
AU - Roth, M.
AU - Sakata, S.
AU - Schaumann, G.
AU - Serres, F.
AU - Servel, J.
AU - Tikhonchuk, V. T.
AU - Woolsey, N.
AU - Zhang, Z.
N1 - © The Author(s) 2017
PY - 2018/1/9
Y1 - 2018/1/9
N2 - Intense lasers interacting with dense targets accelerate relativistic electron beams, whichtransport part of the laser energy into the target depth. However, the overall laser-to-targetenergy coupling efficiency is impaired by the large divergence of the electron beam, intrinsicto the laser-plasma interaction. Here we demonstrate that an efficient guiding ofMeV electrons with about 30MA current in solid matter is obtained by imposing a laserdrivenlongitudinal magnetostatic field of 600 T. In the magnetized conditions the transportedenergy density and the peak background electron temperature at the 60-μm-thicktarget's rear surface rise by about a factor of five, as unfolded from benchmarked simulations.Such an improvement of energy-density flux through dense matter paves the ground foradvances in laser-driven intense sources of energetic particles and radiation, driving matter toextreme temperatures, reaching states relevant for planetary or stellar science as yet inaccessibleat the laboratory scale and achieving high-gain laser-driven thermonuclear fusion.
AB - Intense lasers interacting with dense targets accelerate relativistic electron beams, whichtransport part of the laser energy into the target depth. However, the overall laser-to-targetenergy coupling efficiency is impaired by the large divergence of the electron beam, intrinsicto the laser-plasma interaction. Here we demonstrate that an efficient guiding ofMeV electrons with about 30MA current in solid matter is obtained by imposing a laserdrivenlongitudinal magnetostatic field of 600 T. In the magnetized conditions the transportedenergy density and the peak background electron temperature at the 60-μm-thicktarget's rear surface rise by about a factor of five, as unfolded from benchmarked simulations.Such an improvement of energy-density flux through dense matter paves the ground foradvances in laser-driven intense sources of energetic particles and radiation, driving matter toextreme temperatures, reaching states relevant for planetary or stellar science as yet inaccessibleat the laboratory scale and achieving high-gain laser-driven thermonuclear fusion.
UR - http://www.scopus.com/inward/record.url?scp=85040548381&partnerID=8YFLogxK
U2 - 10.1038/s41467-017-02641-7
DO - 10.1038/s41467-017-02641-7
M3 - Article
C2 - 29317653
AN - SCOPUS:85040548381
SN - 2041-1723
VL - 9
JO - Nature Communications
JF - Nature Communications
IS - 1
M1 - 102
ER -