How well do we understand the reaction rate of C burning?

S. Courtin, C. L. Jiang, G. Fruet, K. Auranen, M. L. Avila, A. D. Ayangeakaa, B. B. Back, S. Bottoni, M. Carpenter, C. Dickerson, B. J. DiGiovine, J. P. Greene, D J Henderson, C. R. Hoffman, R. V F Janssens, B. P. Kay, S. A. Kuvin, T. Lauritsen, R. C. Pardo, K E RehmD. Santiago-Gonzalez, Jaswinder K Sethi, D. Seweryniak, R. Talwar, C. Ugalde, S. Zhu, C. M. Deibel, S. T. Marley, D. Bourgin, F. Haas, M. Heine, D. Montanari, D. G. Jenkins, L. G. Morris, A. Lefebvre-Schuhl, S. Almaraz-Calderon, X. Fang, X. D. Tang, M. Alcorta, B. Bucher, M. Albers, P.F. Bertone

Research output: Contribution to journalArticlepeer-review


Carbon burning plays a crucial role in stellar evolution, where this reaction is an important route for the production of heavier elements. A particle-γ coincidence technique that minimizes the backgrounds to which this reaction is subject and provides reliable cross sections has been used at the Argonne National Laboratory to measure fusion cross-sections at deep sub-barrier energies in the 12C+12C system. The corresponding excitation function has been extracted down to a cross section of about 6 nb. This indicates the existence of a broad S-factor maximum for this system. Experimental results are presented and discussed.

Original languageEnglish
Article number00011
Pages (from-to)1-4
Number of pages4
JournalEPJ Web of Conferences
Publication statusPublished - 22 Nov 2017

Bibliographical note

© The Authors, published by EDP Sciences.

Cite this