Projects per year
Abstract
Carbon burning plays a crucial role in stellar evolution, where this reaction is an important route for the production of heavier elements. A particle-γ coincidence technique that minimizes the backgrounds to which this reaction is subject and provides reliable cross sections has been used at the Argonne National Laboratory to measure fusion cross-sections at deep sub-barrier energies in the 12C+12C system. The corresponding excitation function has been extracted down to a cross section of about 6 nb. This indicates the existence of a broad S-factor maximum for this system. Experimental results are presented and discussed.
Original language | English |
---|---|
Article number | 00011 |
Pages (from-to) | 1-4 |
Number of pages | 4 |
Journal | EPJ Web of Conferences |
Volume | 163 |
DOIs | |
Publication status | Published - 22 Nov 2017 |
Bibliographical note
© The Authors, published by EDP Sciences.Projects
- 1 Finished
-
Nuclear Physics Consolidated Grant
Wadsworth, R. (Principal investigator), Wadsworth, R. (Principal investigator), Andreyev, A. (Co-investigator), Andreyev, A. (Co-investigator), Barton, C. J. (Co-investigator), Diget, C. A. (Co-investigator), Diget, C. A. (Co-investigator), Fulton, B. R. (Co-investigator), Fulton, B. R. (Co-investigator), Jenkins, D. (Co-investigator), Jenkins, D. (Co-investigator), Laird, A. M. (Co-investigator) & Laird, A. M. (Co-investigator)
SCIENCE AND TECHNOLOGY FACILITIES COUNCIL (STFC)
1/08/14 → 30/09/18
Project: Research project (funded) › Research